Pickerel Lake Water Quality
Study Area Report

Prepared by
South Dakota Department of Water and Natural Resources
Water Quality Management Section

July 1985
Pickerel Lake Water Quality
Study Area Report

Prepared by
South Dakota Department of Water and Natural Resources
Water Quality Management Section

July 1985
Pickerel Lake Water Quality
Study Area Report

Prepared by
South Dakota Department of Water and Natural Resources
Water Quality Management Section

July 1985

The preparation of this report was financed through a Section 208 Water Quality Management Planning Grant from the U.S. Environmental Protection Agency
Pickerel Lake WQSA Summary
I. Pickerel Lake Watershed Description
 A. General Description
 B. Beneficial Uses and Impairments
 C. Land Use
 D. Climate, Major Soils and Geology
II. Pickerel Lake Water Quality Study Area Selection
III. Soil Erosion and Sediment Yield Summary
IV. Pickerel Lake Water Quality Status Report
V. Pickerel Lake Watershed Problems and Recommendations
 A. Watershed Problems and Recommendations
 1. Individual Septic Tank/Drainfield Systems
 2. Watershed Runoff
 B. In-Lake Problems and Recommendations
 1. Shoreline Erosion
 2. Eutrophication
VI. Implementation Activities
VII. References Cited
VIII. Appendices

Appendix A Day County Conservation District Final Report
Appendix B South Dakota Department of Game, Fish, and Parks
 South Dakota Statewide Fisheries Surveys
Appendix C Fourth Planning and Development District Report
Appendix D Soil Conversation Service Soil Erosion and Sediment Yield
 Study
Appendix E Water Quality Summary Tables and Figures
Pickerel Lake WQSA Summary

The Pickerel Lake Water Quality Study Area encompasses about 15,015 acres in Day, Marshall, and Roberts Counties with the majority of the drainage area situated in Day County. Pickerel Lake is the deepest natural lake in South Dakota and encompasses 935 acres in northeastern Day County. The lake is classified under the South Dakota State Water Quality Standards for the beneficial uses of warm water permanent fish life propagation, limited contact recreation, immersion recreation, wildlife propagation, and stock watering. The lake has a maximum depth of 43 feet and a mean depth of 22 feet. Symptoms of eutrophication such as blue-green algal blooms and aquatic weeds are present annually. The South Dakota Department of Game, Fish and Parks manages Pickerel Lake for walleye, perch, crappie, northern pike, largemouth and smallmouth bass. No winter or summer fish kills have been documented.

Approximately 62% of the Pickerel Lake watershed is grassland, 30% cropland and 7% water and wetland area. The U.S. Soil Conservation Service (SCS) has estimated that 68% of the drainage area was adequately treated in 1980.

Over 330 homes, cabins and trailer houses are presently located on Pickerel Lake. Other lakeshore developments include three resorts, two restaurants, a YMCA camp, a Bible camp, two State recreational areas, and a State fish hatchery. Pickerel Lake has extensive public use as a recreational area and there is considerable local interest in the lake as evidenced by strong local support of the Pickerel Lake Preservation Project.

A water quality monitoring program was in operation from 1979 to 1984 to determine water quality characteristics and identify water quality problems within Pickerel Lake and its watershed. Samples were collected at nine sites: Sites 1 to 5 were on intermittent streams entering the lake; Site 6
sampled the lake outflow; and Sites 7 to 9 were in-lake sampling sites. Samples were collected on the intermittent streams after rainfall events and during snowmelt runoff. In-lake samples were collected twice a month during the spring, summer, and autumn and once a month during the winter season.

In-lake sampling indicated Pickerel Lake to be eutrophic as evidenced by high concentrations of total phosphorus and organic nitrogen. The main problem at Pickerel Lake appears to be dangerous nutrient loading from the watershed. Estimates based on tributary sampling at Sites 4 and 5 indicated that areal loads to the lake exceeded 0.15 g/m²/year P in 1979 and 2.22 g/m²/year N in 1979 and 1982. These loads exceeded the permissible loading levels designated by Vollenweider (1968). If left unchecked, these nutrient loads will accelerate eutrophication processes in Pickerel Lake.

Water quality analysis has also indicated:

1. Based on the ratio of total nitrogen to total phosphorus, Pickerel Lake may be shifting from a lake that would tend toward phosphorus limitation to one that tends toward nitrogen limitation.

2. The trophic state indices calculated from total phosphorus concentrations indicate that total phosphorus is increasing in the lake over time.

3. The lake is very productive for a warm water fishery. The dominant fraction of nitrogen is organic and is probably derived from agricultural loading. Because Pickerel Lake is a popular recreation lake and because it is the deepest natural lake in South Dakota, emphasis should be placed on the lake to reduce non-point sources of nutrients in order to prevent lake degradation.
Shoreline erosion contributed nearly 98% of the sediment to Pickerel Lake or about 9,310 tons (7 acre-feet) per year. Sediment contribution from the watershed (208 tons/year) was relatively minor largely due to the settling action of numerous sloughs and potholes in the drainage area.

Excessive fecal coliform levels were observed in-lake three times at Site 7 and once at Site 8. Also, excessive fecal coliform levels were observed at tributary Sites 1 and 2. Non-point sources of pollution from the watershed as indicated by high nutrient loading and excessive fecal coliform levels are poor crop and grassland management, feedlots lacking pollution controls, streambank erosion, and failing individual septic tank systems.

A total of 8% of the watershed was treated with BMPs during the Pickerel Lake Preservation Project which brought the total percentage of treated watershed land to an estimated 76%. Permanent grass cover was established on 461 acres in Day County and 107 acres in Roberts County. One hundred acres in Day County were placed under the no-till system.

One animal waste management system and stock dugouts on five farms serving over 360 acres, were completed in 1982 and 1983. Several new septic tank systems were installed by lakeshore cabin owners and a new septic tank drainage field system was constructed for the Pickerel Lake Lodge. Total treated acreage during the Pickerel Lake Preservation Project amounted to about 1,027 acres.

Nutrient loading to the lake from the watershed may be reduced by using Best Management Practices (BMP's) such as proper fertilizer management practices, minimum tillage, proper rangeland management and feedlot wastewater control systems. Land owners need to maintain existing BMPs or else any gains in nutrient and sediment reduction will be lost. A septic tank survey should be
conducted around the lake to identify problem areas and technical assistance should be provided to control existing problems. Shoreline stabilization is recommended in rapidly eroding areas. After the above measures are implemented, selective dredging and chemical phosphorus flocculation may improve water quality and the overall recreational potential of the lake.
I. Pickerel Lake Watershed Description

A. General Description

Pickerel Lake is a popular recreational lake located in northeastern Day County. It is the deepest natural lake in South Dakota, having a maximum depth of 43 feet and a mean depth of 22 feet. The elongated lake has a surface area of 955 acres and 9.4 miles of shoreline (Marrone, 1978). The bottom is predominantly rubble with scattered areas of sand and gravel. Silt and organic clay are found in the bays and deeper areas of the lake.

Pickerel Lake is one of the recharge areas for the Basal System, Pierre Aquifer, and shallow aquifers in the vicinity of a chain of lakes known as the Waubay Lakes Basin. Water is supplied to the lake by direct precipitation, watershed runoff and groundwater. The quantity of groundwater entering the lake is unknown. It has been reported (Leap 1972) that all lakes in this area of Day County are surrounded by relatively thick, well developed surface aquifers. The aquifers range in thickness from about 10 to 20 feet and are in direct hydraulic connection with the lakes.

The Pickerel Lake watershed is situated in the Coteau des Prairies, a hilly plateau of glacial moraine encompassing portions of Day, Marshall, and Roberts counties. The majority of the watershed is within Day County (Figure 1). The drainage area consists of about 17,496 acres according to Landsat-Remote Sensing estimates and 15,015 acres according to an on-site survey by the U.S. Soil
Conservation Service (SCS). The on-site survey is considered to be more reliable.

The watershed consists of two major drainages and three minor drainages. Chekopa Creek enters the lake from the east and drains the largest area in the watershed. Dry Creek drains the next largest area and enters Pickerel Lake from the north. The remaining watershed area includes direct runoff areas along the shoreline and three minor drainages.

B. Beneficial Uses and Impairments

Pickerel Lake is a heavily used recreational lake providing fishing, boating, waterskiing, picnicking, camping and swimming. The lakeshore camping areas were used by 53,000 people in 1981, 55,000 people in 1982, and 60,000 people in 1983 (Day County Conservation District Final Report, 1984, Appendix A). These yearly increases indicate that public use in Pickerel Lake is growing at a rapid pace and will continue to increase in the future (ibid.). The lake supports a permanent warmwater fishery of perch, bass, crappie, bullhead, walleye, northern pike, and bluegill (Marrone, 1978). To date no fish kills have been documented. The South Dakota Department of Game, Fish, and Parks (GF&P) continues to manage the lake as a walleye-panfish-bass lake with limited stocking of northern pike and smallmouth bass. Appendix B contains the 1978 Pickerel Lake Fisheries Survey. At present the lake serves as a control in an ongoing study to determine the effectiveness of walleye stocking in other South Dakota lakes.
According to the South Dakota Board of Water and Natural Resources regulation, Chapter 74:03:02, "Surface Water Quality Standards", Pickerel Lake is classified as having the beneficial use designations of: warmwater permanent fish life propagation, limited contact recreation, immersion recreation, wildlife propagation and stockwatering (Table 1).

Dense weed beds in nearshore areas and blue-green algal blooms in open water impair immersion recreation in Pickerel Lake during the summer. Other problem areas include: faulty septic tanks, three feedlots with high pollution potential and soil erosion from cropland, pastures, and the lake shoreline (Day County Conservation District Final Report, 1984, Appendix B). These are sources of nutrients, fecal coliform bacteria, and sediment that enter Pickerel Lake and contribute to the degradation of water quality.

All of the contributing intermittent tributaries are classified for: wildlife propagation, stockwatering, and irrigation. Although the tributaries have less stringent water quality criteria, they must not cause the more stringent Pickerel Lake criteria to be exceeded (Table 1). Water quality data suggest that Pickerel Lake may be receiving excessive nutrient loads as well as high levels of fecal coliform from these drainages. The tributaries, mainly Chekapa and Dry Creek, are also sources of appreciable input of sediments into Pickerel Lake. The U.S. Soil Conservation Service (SCS) estimated an average of 208 tons of sediment is transported into the lake each year from cropland and grassland (SCS Soil Erosion and Yield Study 1981). However, the report also notes that nearly 98% of the sediment
<table>
<thead>
<tr>
<th>Parameters:</th>
<th>Pickerel Lake</th>
<th>Outlet (Pickerel Creek)</th>
<th>Tributaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneficial Use Rating Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Total</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>CaCO₃ - mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine, Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual - mg/l</td>
<td><0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliform Fecal organisms/100 ml</td>
<td>200</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Conductivity - micromhos/cm at 25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide, Free - mg/l</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide, Total - mg/l</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undissociated - mg/l</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unionized (as N) - mg/l</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrates (as N) - mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen, Dissolved - mg/l</td>
<td>25.0</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>pH - Units</td>
<td>6.5<pH<9.0</td>
<td>6.5<pH<8.3</td>
<td>6.0<pH<9.0</td>
</tr>
<tr>
<td>Polychlorinated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biphenyls - mg/l</td>
<td>0.000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio (SAR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids, Suspended - mg/l</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solids, Total Dissolved - mg/l</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature - °F</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
delivered to the lake (9,310 tons/year) is derived from shoreline erosion.

Pickerel Creek, the outflow, is classified for: warmwater marginal fish life propagation, limited contact recreation, wildlife propagation and stockwatering, and Irrigation. Levels of all water quality parameters at Pickerel Creek meet with applicable standards. Table 1 lists the water quality criteria by parameter for each beneficial use classification.

C. Land Use.

Land use in the watershed is predominantly agricultural. Estimates based on Landsat Remote Sensing (Figure 2) indicate a total watershed drainage of 17,496 acres. Approximately 10,869 acres (62%) of the area is grassland, 5,276 acres (30%) cropland, 1,174 acres (7%) water and wetland area, and 150 acres (1%) forestland, farmstead and/or lake cottages. Small grains are the main crops grown in the watershed. The major portion of the Pickerel Lake Watershed is privately owned although several areas adjacent to the lake are administered by the U.S. Bureau of Indian Affairs (BIA) and the Sisseton-Watapahto Sioux Tribe.

Extensive residential development has occurred along the shoreline of the lake. In 1971 approximately 55% of the shoreline had been developed (Hansen, 1976). At present, shoreline developments include over 330 homes, cabins, and trailer houses. Most of the latter are used only during the summer months. Other developments include three resorts, two restaurants, a YMCA camp, a Bible camp, two state
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>ACRES</th>
<th>HECTARES</th>
<th>%</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>748</td>
<td>303</td>
<td>4.3%</td>
<td>90%</td>
</tr>
<tr>
<td>WETLAND /</td>
<td>426</td>
<td>172</td>
<td>2.4%</td>
<td>84%</td>
</tr>
<tr>
<td>SHALLOW WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRASSLAND</td>
<td>10,896</td>
<td>4,410</td>
<td>62.3%</td>
<td>91%</td>
</tr>
<tr>
<td>CROPLAND</td>
<td>5,276</td>
<td>2,135</td>
<td>30.1%</td>
<td>81%</td>
</tr>
<tr>
<td>FORESTLAND</td>
<td>150</td>
<td>61</td>
<td>.9%</td>
<td>N.O.*</td>
</tr>
<tr>
<td>TOTALS</td>
<td>17,496</td>
<td>7,081</td>
<td>100%</td>
<td>86%</td>
</tr>
</tbody>
</table>

* No Observations

PICKEREL LAKE WATER QUALITY STUDY AREA
PRODUCED BY
SOUTH DAKOTA STATE PLANNING BUREAU

IN 1975, THE SOUTH DAKOTA STATE PLANNING BUREAU INITIATED A COMPREHENSIVE
REMOTE SENSING MAPPING PROGRAM THROUGOUT THE STATE. THIS PICKEREL LAKE WATER
QUALITY STUDY AREA MAP WAS PART OF THAT PROGRAM AND WAS PRODUCED THROUGH A
COMPUTER ASSISTED CLASSIFICATION OF LANDSAT SATELLITE DATA FOR THE STUDY AREA.
THE MAP HAS UNDERGONE A VERIFICATION PROCESS USING A 5% RANDOM SAMPLE IN
ORDER TO ASSESS THE ACCURACY OF THE REPRESENTED LAND COVER CATEGORIES.

SOIL EROSION CAN BE A MAJOR PROBLEM ON CULTIVATED LANDS, PARTICULARLY ON
STEEP SLOPES AND DRAINAGE NETWORKS. CROPP Rotation, TILLAGE SYSTEMS, MANAGEMENT
OF RESIDUES, AND OTHER CONSERVATION PRACTICES HAVE A SIGNIFICANT EFFECT IN
REDUCING THE AMOUNT OF EROSION IN AREAS USED AS CROPLAND.

THE PREPARATION OF THIS MAP WAS FINANCED THROUGH A SECTION 308 WASTE
TREATMENT MANAGEMENT GRANT FROM THE U.S. ENVIRONMENTAL PROTECTION AGENCY. FOR
MORE INFORMATION CONTACT:

PLANNING INFORMATION SECTION
SOUTH DAKOTA STATE PLANNING BUREAU
CAPITOL BUILDING
PIERRE, SD 57501
605-773-3661

Figure 2

8a
Pickerel Lake Water Quality Study Area

Figure 2 (continued)
recreational areas and a state fish hatchery. Much of the remaining shoreline area is too steeply sloped for residential development.

D. Climate, Major Soils and Geology

Climate

The climate of northeastern South Dakota is continental with cold, dry winters and short springs marked by rapid weather changes. Forty-two percent (42%) of total annual precipitation is normally recorded in the 3-month period from April through June. The highest monthly precipitation falls in June, averaging 3.93 inches over one 6-year period. Summer and autumn are characterized by warm to mild days with a maximum of sunshine. Mean minimum and maximum temperatures in the Waubay area are 60°F and 84°F during July; 0°F and 20°F during January (Hodge, 1960). Mean annual temperature is about 44°F. Average annual precipitation and lake evaporation amount to 22 and 32 inches, respectively (South Dakota State Planning Bureau, 1975).

Major Soils and Geology

Glacial drift is the parent material of the soils in the watershed and is also responsible for the topography of the area. Some of the watershed soils were formed in loess that overlies the drift while others were formed in alluvium.
The U. S. Soil Conservation Service (SCS) has assigned the following general soils classifications for the watershed (Soils of Day County, 1952):

a. Forman-Aasted-Buse Association

These soils are well drained and moderately well drained, gently undulating to steep, loamy soils formed in loamy glacial till. This association is a glacial moraine that consists of hills, swales, and numerous depressions or potholes. Slopes are short and irregular. The drainage pattern is well defined in parts of this association, but in other areas swales and small drainage ways terminate in sloughs, small lakes, and depressions.

About 40% of the area is comprised of Forman soils, 20% Aasted soils, and 15% Buse soils. The rest are minor soils.

Forman soils are on the sides of rounded hills. Aasted soils are in the swales. Buse soils are in the higher parts of the landscape. In many areas of this association, soils are too steep or too stony to be cultivated.

Most cultivated soils are subject to erosion. Control of erosion is the main concern of conservation management. A major portion of these soils are under cultivation. The soils are well suited to corn, small grains, flax, alfalfa, and tame grasses. Other areas remain in native grass and are used for grazing or for growing hay.
b. Renshaw-Fordville Association

These soils are somewhat excessively drained and well drained, nearly level to steep, loamy soils that are shallow and moderately deep over outwash sand and gravel. A few sloughs, small lakes, and potholes are scattered throughout the area.

About 45% of the area is comprised of Renshaw soils and 30% Fordville soils. The rest are minor soils. Fordville soils generally have sand and gravel at a depth of about 22 inches.

The soils are droughty. Available water capacity is low or moderate. Runoff is medium. These soils are subject to water erosion and soil blowing. Conservation of moisture and control of water erosion and soil blowing are the main concern of conservation management.

Many areas of this soil association are cultivated and used for growing small grains, flax, alfalfa, and other early maturing crops.

c. Other Soils

There are a number of minor soils including Sioux and Parnell. One of the more common ones is Parnell. It is very poorly drained and occurs in many depressions or potholes throughout the area. They generally have no natural outlets and are flooded during the greater part of the year. Nearly all of them are in grass or wetland vegetation. These soils cover nearly 7% of the watershed area.
II. Pickerel Lake Water Quality Study Area Selection

Nominations for designation as a Water Quality Study Area (WQSA) within the Fourth Planning and Development District were solicited from the Fourth Planning and Development District Commission. In February 1979 nominations were requested from all commissioners and the following lakes were suggested: Pickerel Lake (Day County), Lake Byron (Beadle County), Lake Eureka (McPherson County), and Cottonwood Lake (Spink County).

The criteria established for selection purposes were: the State Lakes Preservation Committee criteria, the South Dakota Lake Significance Ranking criteria, the availability of soils data, and background water quality data. The most important criteria after technical consideration was evidence of strong public support and the possibility of eventually establishing an implementation project. Pickerel Lake met these criteria and was selected by the Fourth Planning and Development District Commission as that District's WQSA. Appendix C contains the Fourth Planning and Development District's Pickerel Lake WQSA Report.

III. Soil Erosion and Sediment Yield Summary

SCS conducted a soil erosion and sediment yield study of Pickerel Lake. Results of the study are summarized in this Section while Appendix D contains the entire report. The SCS study detailed the type, extent, and location of erosion and sedimentation problems including the significance of the contribution from each tributary.

SCS estimated total watershed soil erosion to be 31,181 tons per year with total sediment deposited in Pickerel Lake at 9,518 tons per year or 7.3 acre feet per year. Cropland and grassland erosion (21,871 tons per year)
contributes 208 tons of sediment per year to Pickerel Lake. All of the lake shore erosion ends up as sediment in Pickerel Lake and is estimated to be 9,310 tons per year.

SCS selected best management practices (BMP's) to reduce sediment yield and estimated required coverage and probable costs to adequately treat this watershed. The total cost for application of BMP's (conservation practices) was estimated at $124,660 or $8.30 per acre. Examples of needed conservation practices are: conservation tillage systems, grassed waterways, field windbreaks, pasture and hayland planting, sediment control measures, etc. A detailed breakdown of conservation practices and costs is presented in Table 2.

IV. Pickerel Lake Water Quality Status Report

Introduction

Pickerel Lake is located in northeastern Day County (Latitude: 45° 30 min. 24 sec. N; Longitude: 97° 16 min. 24 sec. W; T124N-R53W, Sections 14, 22, 23, 26, 27, 34 and 35). It is the deepest natural lake in South Dakota, having a maximum depth of 13.2 meters and a mean depth of 6.1 meters. The lake has a surface area of 386.5 hectares (955 acres) and 9.4 miles of shoreline. Lake volume is 2.356x10^7 m^3 or 19,100-acre feet. The bottom is predominantly rubble with scattered areas of sand and gravel. Silt and organic rich clay are found in the bays and deeper areas of the lake.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amount Needed</td>
<td>Amount Needed</td>
<td>Amount Needed</td>
<td>Amount Needed</td>
<td>Amount Needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Dollars)</td>
<td>(Dollars)</td>
<td>(Dollars)</td>
<td>(Dollars)</td>
<td>(Dollars)</td>
</tr>
<tr>
<td>Cropland - 6,666 Acres</td>
<td>acre</td>
<td>2,066</td>
<td>1,595</td>
<td>1,898</td>
<td>1,107</td>
<td>6,666</td>
<td></td>
</tr>
<tr>
<td>Conservation Cropping system</td>
<td>acre</td>
<td>5</td>
<td>10,330</td>
<td>1,595</td>
<td>7,975</td>
<td>1,898</td>
<td>5,535</td>
</tr>
<tr>
<td>Conservation Tillage System</td>
<td>acre</td>
<td>18</td>
<td>2,790</td>
<td>120</td>
<td>2,160</td>
<td>83</td>
<td>1,494</td>
</tr>
<tr>
<td>Grasses & Legumes in Rotation</td>
<td>acre</td>
<td>500</td>
<td>2,125</td>
<td>2,000</td>
<td>1,100</td>
<td>650</td>
<td>8,000</td>
</tr>
<tr>
<td>Waste Utilization</td>
<td>acre</td>
<td>3</td>
<td>1,140</td>
<td>220</td>
<td>443</td>
<td>660</td>
<td>1,800</td>
</tr>
<tr>
<td>Minimize Fall Tillage</td>
<td>acre</td>
<td>330</td>
<td>638</td>
<td>759</td>
<td>443</td>
<td>2,170</td>
<td></td>
</tr>
<tr>
<td>Minimize Pesticide Use</td>
<td>acre</td>
<td>330</td>
<td>638</td>
<td>759</td>
<td>443</td>
<td>2,170</td>
<td></td>
</tr>
<tr>
<td>Contour Stripcropping</td>
<td>acre</td>
<td>32</td>
<td>288</td>
<td>57</td>
<td>342</td>
<td>198</td>
<td>1,200</td>
</tr>
<tr>
<td>Timing Nitrogen Application</td>
<td>acre</td>
<td>330</td>
<td>638</td>
<td>759</td>
<td>443</td>
<td>2,170</td>
<td></td>
</tr>
<tr>
<td>Field Windbreaks</td>
<td>mile</td>
<td>250</td>
<td>1.5</td>
<td>1.0</td>
<td>250</td>
<td>5.0</td>
<td>1,250</td>
</tr>
<tr>
<td>Grassland - 6,870 Acres</td>
<td>acre</td>
<td>6,918</td>
<td>448</td>
<td>744</td>
<td>325</td>
<td>3,435</td>
<td></td>
</tr>
<tr>
<td>Proper Grazing Use</td>
<td>acre</td>
<td>20</td>
<td>5,600</td>
<td>1,300</td>
<td>108</td>
<td>47</td>
<td>500</td>
</tr>
<tr>
<td>Deferred Grazing</td>
<td>acre</td>
<td>575</td>
<td>134</td>
<td>223</td>
<td>98</td>
<td>2,030</td>
<td></td>
</tr>
<tr>
<td>Planned Grazing Systems</td>
<td>acre</td>
<td>112</td>
<td>26</td>
<td>43</td>
<td>19</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Livestock Water Stations</td>
<td>No.</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>Pasture & Hayland Management</td>
<td>acre</td>
<td>1,918</td>
<td>448</td>
<td>744</td>
<td>325</td>
<td>3,435</td>
<td></td>
</tr>
<tr>
<td>Waste Management Systems</td>
<td>No.</td>
<td>1</td>
<td>20,000</td>
<td>-</td>
<td>2</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>Wildlife Upland Habitat Hgmt.</td>
<td>acre</td>
<td>4</td>
<td>11</td>
<td>44</td>
<td>16</td>
<td>8</td>
<td>80</td>
</tr>
</tbody>
</table>

Farmsteads, Urban & Other, 556 acres

| Sediment Control Measures | acre | 2,000 | 18 | 36,000 | 24,000 | 20 | 40,000 |

TOTALS - Total acres - 15,015 acres

57,761 33,985 22,179 10,735 124,660 or $8.30 per acre

1/ Needed to get "Land Adequately Treated."
3/ On site investigation and planning are necessary to determine kinds, locations, sizes, extent & costs of practices (BMP's)
4/ Examples of measures are: cover and green manure crop, filter strips, lined and grassed waterways, diversions, mulching, sediment basins, streambank protection, and critical area planting
5/ Includes 933 acres of non-sediment producing land
Pickerel Lake has been assigned the following beneficial uses according to the South Dakota Board of Water and Natural Resources Regulation, Chapter 74:03:02:

- Warmwater permanent fish life propagation;
- Immersion recreation;
- Limited contact recreation;
- Wildlife propagation and stock watering.

Water quality samples were collected from in-lake and tributary sites between 1979 and 1984. Table IV-1 and Figures 3 and 4 describe the sampling site locations. Tables IV-2 through IV-14 summarize the water quality data collected at each site on an annual basis and Tables IV-15 through IV-27 summarize the violations of South Dakota's water quality standards observed at the various sampling sites. Tables and figures (IV-1 through IV-31) discussed in this chapter are contained in Appendix E.

The following discussion will center around the water quality data. Violations of the State's water quality standards will be described and the location of the violations identified. Any potentially limiting nutrient will be identified, trophic state indices will be discussed and nutrient loads presented.
Figure 3. Pickerel Lake sample sites.
46P107 (PI-7)
Latitude 45 deg., 31 min., 01 sec.; longitude 97 deg., 17 min., 01 sec.; Township 124N, Range 53W; Section 15. NE1/4, SE1/4, SW1/4, SW1/4. Pickerel in-lake site by northeast shore.

46P108 (PI-8)
Latitude 45 deg., 30 min., 03 sec.; longitude 97 deg., 16 min., 03 sec.; Township 124N, Range 53W; Section 23. SW1/4, SW1/4, SW1/4, SW1/4. Pickerel in-lake site by east shore.

46P109 (PI-9)
Latitude 45 deg., 28 min., 38 sec.; longitude 97 deg., 16 min., 04 sec.; Township 124N, Range 53W; Section 34. SE1/4, NE1/4, NE1/4, SE1/4. Pickerel in-lake site by south shore.

46P17A (PI-7A)

46P18A (PI-8A)
Latitude 45 deg., 29 min., 55 sec.; longitude 97 deg., 16 min., 00 sec.; Township 124N, Range 53W; Section 26. SE1/4, NW1/4, NW1/4, NW1/4. Pickerel in-lake site by east shore.

46P19A (PI-9A)
Latitude 45 deg., 29 min., 08 sec.; longitude 97 deg., 16 min., 17 sec.; Township 124N, Range 53W; Section 34. NE1/4, NW1/4, NE1/4, NE1/4. Pickerel in-lake site by southwest shore.

Figure 3 (cont.). Pickerel Lake sample sites.
Figure 4. Pickerel Lake watershed sample sites.
Latitude 45 deg., 31 min., 47 sec.; longitude 97 deg., 16 min., 36 sec.; Township 124N, Range 53W; Section 15. NW1/4, NW1/4, NW1/4, NE1/4. North tributary to Pickerel Lake.

Latitude 45 deg., 31 min., 42 sec.; longitude 97 deg., 16 min., 29 sec.; Township 124N, Range 53W; Section 15. SW1/4, NE1/4, NW1/4, NE1/4. North-northeast tributary to Pickerel Lake.

Latitude 45 deg., 30 min., 34 sec.; longitude 97 deg., 15 min., 00 sec.; Township 124N, Range 53W; Section 23. NE1/4, SW1/4, SE1/4, NE1/4. Tributary northeast Inlet to Pickerel Lake.

Latitude 45 deg., 28 min., 55 sec.; longitude 97 deg., 15 min., 46 sec.; Township 124N, Range 53W; Section 35. NE1/4, NE1/4, SW1/4, NW1/4. Pickerel Lake Inlet at State Fish Hatchery.

Latitude 45 deg., 30 min., 15 sec.; longitude 97 deg., 16 min., 58 sec.; Township 124N, Range 53W; Section 22. NW1/4, NW1/4, SE1/4, SW1/4. Pickerel Lake outlet at State Park.

Latitude 45 deg., 31 min., 46 sec.; longitude 97 deg., 14 min., 52 sec.; Township 124N, Range 53W; Section 14. NE1/4, NE1/4, NE1/4, NE1/4. Northeast tributary to Pickerel Lake.

Latitude 45 deg., 30 min., 48 sec.; longitude 97 deg., 16 min., 04 sec.; Township 124N, Range 53W; Section 23. SW1/4, NW1/4, NW1/4, NW1/4. Northeast tributary to Pickerel Lake.

Figure 4 (cont.). Pickerel Lake watershed sample sites.
Water Quality Parameters

Dissolved Oxygen

Pickerel Lake has been classified by the State of South Dakota as a warm water permanent fish life propagation body of water. Therefore, dissolved oxygen (DO) concentrations are not to be less than 5.0 ppm. In-lake DO concentrations ranged from 5.5 to 13.8 ppm and therefore were never at dangerous levels in the upper surfaces of the water. DO concentrations at depth are not known. Figures IV-1 through IV-3 demonstrate the general trends of DO observed in 1979 at Sites 46P107, 46P108 and 46P109. In general, the DO appears to decrease through the summer until about September and then to increase. The decrease observed is probably related to increasing water temperatures.

At the tributary sampling sites, low DO concentrations were observed at Sites 46P101, 46P104 and 46P13Y. At Site 46P101, DO concentrations were low in 57% of the samples; at Site 46P104, DO concentrations were low in 35% of the samples; and at Site 46P13Y, DO concentrations were low in 50% of the samples. DO concentrations ranged from <1.0 to 10.3 ppm at Site 46P101, from 1.9 to 12.3 ppm at Site 46P104, and from 1.3 to 15.7 ppm at Site 46P13Y. The reason(s) for the low dissolved oxygen values are not known at this time. All other inflows or outflow sites had adequate DO levels.

Fecal Coliforms

As previously stated, Pickerel Lake has been assigned the beneficial use of immersion recreation. Therefore, fecal coliform levels are limited to 200 per 100 ml as a geometric mean based on a minimum of not less than five
samples obtained during separate 24-hour periods for any 30-day period, nor shall they exceed this value in more than 20% of the samples examined in the above described 30-day period; nor shall they exceed 400 per 100 ml in any one sample from May 1 to September 30. In-lake, the 400 per 100 ml limit was exceeded three times at Site 46P107 (mean violation 19,527 per 100 ml) and once at Site 46P108 (2,000 per 100 ml) in 1979 (see Figures IV-4 through IV-6).

High levels of fecal coliforms were observed at Site 46P101 twice in July, 1979 (i.e., 430 per 100 ml and 510 per 100 ml). Site 46P102 was observed to have high fecal coliforms in June and July, 1979. The geometric mean was 903 per 100 ml in June and 933 per 100 ml in July. The in-lake violations observed at Site P107 were probably a result of septic tank seepage (see Watershed Problems and Recommendations). Sites 46P104 and 46P105 also had high levels of fecal coliforms. Sources of fecal contamination should be identified in order to protect immersion recreation in the lake.

pH

The most stringent criteria for pH occurs under the beneficial use category of immersion recreation. The pH shall be greater than 6.5 units and less than 8.3 units. In-lake, the pH exceeded the 8.3 limit or was less than the 6.5 limit in 34% of the samples (Tables IV-20 through IV-22). Average in-lake pH values ranged from 7.3 to 8.1.

Based on the above criteria, the waters flowing into the lake from Site 46P101, Site 46P102 and Site 46P13Y were observed to have pH values
less than 6.5 units. Sites 46P102 and 46P13Z were observed to have pH values greater than 8.3.

Total Solids, Total Dissolved Solids and Suspended Solids (Total Residue, Dissolved Residue and Total Nonfilterable Residue)

Dissolved solids is a term associated with fresh water systems and consists of inorganic salts, small amounts of organic matter, and dissolved material (EPA, 1976). The principal inorganic anions dissolved in water include carbonates, chlorides, sulfates and nitrates and the principal cations are sodium, potassium, calcium and magnesium. Based upon the beneficial uses assigned to Pickerel Lake, total dissolved solids should not exceed 2,500 mg/l. In-lake concentrations of total dissolved solids ranged from 106 ppm at Site 46P18A to 660 at Site 46P19A. The observed levels are not considered to be excessive.

The limits for suspended solids established for a warm water permanent fishery is 90 ppm. Excessive suspended solids in a body of water can have a detrimental effect on a lake's fishery. In 1965, the European Inland Fisheries Advisory Committee identified four (4) means by which suspended solids can adversely affect fish and fish food populations (EPA, 1976). Fish swimming in waters with high suspended solids can be killed directly, their growth rate reduced, or their resistance to disease reduced. In addition, suspended solids can prevent the successful development of fish eggs and larvae, modify natural movements and migrations of fish and reduce the abundance of food available to fish. Only two excessive levels of suspended solids were observed (Site 46P105, 425 ppm; Site 46P109, 118 ppm). Although Site 46P109 is in the same vicinity as Site 46P105, the
sampling dates were different. Therefore, the source of the suspended solids cannot be attributed to Site 46P105.

Ammonia as Nitrogen

The limit of 0.04 ppm, established by the State for ammonia as nitrogen is based on un-ionized ammonia. Concentrations exceeding this limit were not observed in Pickerel Lake. Figures IV-7 through IV-9 illustrate the total ammonia concentrations for 1979. At Site 46P107, an increase in ammonia was observed over June and July and a large increase in November and December. Ammonia concentrations at Site 46P108 increased between July and August. Site 46P109 demonstrated ammonia concentrations similar to those observed at Site 46P107 except that the first increase was observed in August rather than over June and July.

In-lake mean concentrations of ammonia ranged from .006 ppm at Site 46P108 to .54 ppm at Site 46P18A. The mean concentrations of ammonia ranged from .01 ppm at Site 46P104 to .30 ppm at Site 46P105 (Note in Table IV-6 a value of 20 ppm for ammonia is reported. This value is not recorded on the raw data sheets and is assumed to be a typographical error).

Kjeldahl Nitrogen

In-lake Kjeldahl nitrogen ranged from .10 ppm at Site 46P19A to 3.6 ppm at Site 46P18A. The mean concentrations were .88 ppm at Site 46P107, .64 ppm at Site 46P108, .71 ppm at Site 46P109, .86 ppm at Site 46P17A, .88 ppm at Site 46P18A, and .68 ppm at Site 46P19A. Figures IV-10 through IV-12 show the total Kjeldahl nitrogen data observed at Sites 46P107, 46P108 and 46P109. There were no clearly discernable trends.
The inflows and output sites had total Kjeldahl nitrogen concentrations that ranged from .05 ppm at Site 46P104 to 5.05 ppm at Site 46P101. In general, total Kjeldahl nitrogen mean values tended to be higher in the tributary sites than the in-lake sites.

Nitrate as Nitrogen

Nitrate nitrogen concentrations range from 0 to 10 ppm in unpolluted fresh waters (Wetzel, 1975) and it is the nutrient source readily assimilated by the phytoplankton. In-lake concentrations ranged from .10 to .60 ppm and tributary concentrations ranged from .10 to 6.0 ppm. The 6.0 ppm concentration was observed at Site 46P102 in 1979 and the mean concentration at the site was 2.69 ppm.

Nitrite-Nitrogen

Nitrite-nitrogen levels are generally low in natural waters (0 to .01 ppm; Wetzel, 1975). The greatest concentration of nitrite-nitrogen observed in Pickerel Lake was .02 ppm. In general, the levels of nitrite were <.01 ppm. The highest nitrite-nitrogen concentration observed in the tributaries occurred at Site 46P102 and was .05 ppm.

Inorganic Nitrogen and Organic Nitrogen

Inorganic nitrogen is the sum of ammonia, nitrate and nitrite-nitrogen concentrations and organic nitrogen is total Kjeldahl nitrogen less ammonia. Table IV-28 gives the mean organic nitrogen (ORGN) and mean inorganic nitrogen (INON) concentrations observed in Pickerel Lake. In addition, the Table gives the standard deviations, number of observations and minimum and maximum values observed in the lake.
Organic nitrogen ranged from 0.0 ppm to 3.10 ppm and mean in-lake values ranged from .596 ppm to .848 ppm. These mean values suggest that the trophic status of the lake ranges from meso-eutrophic to eutrophic (Netzel, 1975; Table 11-4). Based on those mean values, organic nitrogen is the dominant form of nitrogen in Pickerel Lake. Figures IV-13 through IV-18 show the observed data points. A common trend between sites was not discernable.

Inorganic nitrogen concentrations ranged from .116 ppm to 1.50 ppm and mean in-lake concentrations ranged from .142 to .225 ppm (Table IV-28). Based on these values, Pickerel Lake would be classified as ultra-oligotrophic to oligo-mesotrophic. Figures IV-19 through IV-24 demonstrate the observed data.

Total Phosphorus

Total phosphorus is a common water quality parameter often used as an index of a lake's trophic state. Reckhow, et al. (1980) proposed that a lake with phosphorus concentrations ranging between .020 and .050 ppm would be classified as a eutrophic lake and a lake with phosphorus concentrations greater than .050 ppm would be classified as hypereutrophic. General characteristics assigned to a eutrophic lake are: 1) reduction in aesthetic properties; 2) diminished enjoyment from body contact recreation; and 3) generally very productive for warm water fisheries. A hypereutrophic lake is considered to be a typical "old aged" lake in advanced succession. There would probably be some fisheries but there are also probably high levels of sedimentation and algae or macrophyte growth diminishing the open water surface area.
Total phosphorus concentrations in-lake ranged from .007 to .230 ppm and mean in-lake concentrations ranged from .036 ppm to .073 ppm. Therefore, Pickerel Lake's trophic status would be considered to range between eutrophic and hypereutrophic over the period of study. There is reason for concern about increasing phosphorus loads in Pickerel Lake because the mean concentrations in 1983 are higher than in 1979. The difference in means may or may not be real because the sites were changed between 1979 and 1983. This lake should be monitored in detail in order to determine if the lake is undergoing degradation.

Figures IV-25 through IV-27 illustrate the total phosphorus concentrations observed in Pickerel Lake. At Sites 46P107 and 46P109, increases in total phosphorus were observed in August and December in 1979. However, Site 46P108 only showed a large increase in total phosphorus in June of 1979.

Total Orthophosphorus

Total orthophosphate (or total reactive phosphorus) is a measure of dissolved orthophosphate, organic soluble phosphorus and colloidal phosphorus (Wetzel, 1975). In addition, in this case, it measures part of the hydrolyzable phosphorus because the total orthophosphate analyses were conducted on waters preserved with concentrated sulfuric acid (2 mls per liter).

The mean in-lake concentrations ranged from .005 to .023 ppm. As with the total phosphorus values, the total orthophosphate values were higher in 1982 and 1983 than in 1979. (NOTE: The total orthophosphate samples were not labelled as filtered.) The 1979 data is illustrated in Figures IV-28
and IV-30. Sites 46P107, 46P108 and 46P109 were observed to increase in orthophosphate concentrations in the fall. In addition, Site 46P108 showed an increase in orthophosphate concentrations in June.

Limiting Nutrient

If an organism is to survive in a given environment, it must have the necessary materials to maintain itself and be able to reproduce. If an essential material approaches a critical minimum, this material will be the limiting one (Odum, 1971). Phosphorus is often the nutrient that is limiting in an aquatic ecosystem.

In order to determine that nutrient which will tend to be limiting, EPA (1980) has suggested the ratio of total nitrogen to total phosphorus of 15:1. If the ratio calculated from observed data is greater than 15:1, the lake is assumed to tend toward phosphorus limitation. If the ratio is less than 15:1, the lake is assumed to tend toward nitrogen limitation. The further the calculated ratios are from the 15:1 ratio the more confident the analyst is in the conclusion.

Table IV-30 shows the 95% confidence intervals for the in-lake ratios of total nitrogen to total phosphorus. There are indications that the ratios are shifting from what would be considered a phosphorus limiting trend to a nitrogen limiting trend. Monitoring should be continued to determine if the observed values in Table IV-30 are real or an artifact of analytical procedures.
Trophic State Index (TSI)

In 1977, Carlson presented a numerical trophic state index from 0 to 100. Each major division (10, 20, 30, etc.) represents a doubling in algal biomass. The numerical index can be calculated from Secchi disc readings, chlorophyll a and total phosphorus concentrations. The results in Table IV-30 are the mean annual TSI's calculated from the total phosphorus concentrations. The trend observed suggests that the mean TSI's for total phosphorus are increasing over time. This means that the algal biomass is increasing indicating an increase in eutrophication. In future analyses it would be useful to obtain data for chlorophyll a and Secchi disc in addition to phosphorus in order to compare TSI values between parameters.

Nutrient Loads

The nutrient load data is not available for Sites 46P101, 46P102, 46P13Y, 46P13Z and 46P104 (at the 36-inch culvert). Data was available for the 60-inch culvert at Site 46P104 and at Site 46P105. Therefore, the estimated nutrient loads are underestimates.

Table IV-31 presents the nutrient loads for Sites 46P104 (60-Inch culvert) and Site 46P105. Also present are the areal loads. Even though the areal loads are underestimates the values suggest that Pickerel Lake is receiving dangerous loads of the nutrients, total phosphorus and total nitrogen (Vollenweider, 1968; cited in Wetzel, 1975, Table 12-10). Because Pickerel Lake has a mean depth of 6.1 meters and Table 12-10 has estimates of dangerous loads for lakes with mean depths of 5 meters and 10 meters, dangerous load estimates were obtained by extrapolation. For a lake with a mean depth of 6.1 meters, the dangerous load for total phosphorus is
.15 g/m²/yr. and for total nitrogen is 2.2 g/m²/yr. Total phosphorus areal loads exceeded .15 g/m²/yr. In 1979 and total nitrogen areal loads exceeded 2.2 g/m²/yr. In both 1979 and in 1982 (Table IV-31). Therefore, based on these limited data, there is concern that Pickerel Lake is approaching a state of greater eutrophy.

Summary

Pickerel Lake is the deepest natural lake in South Dakota and has been assigned the following beneficial uses: 1) warm water permanent fish life propagation; 2) immersion recreation; 3) limited contact recreation; and 4) wildlife propagation and stock watering. The following information will summarize the water quality observations.

1. Dissolved oxygen concentrations in-lake were adequate to support a warm water permanent fishery. However, low dissolved oxygen concentrations were observed at tributary Sites 46P101, 46P104 and 46P13Y.

2. Excessive fecal coliform levels were observed in-lake three times at Site 46P107 and one at Site 46P108. Also, excessive fecal coliform levels were observed at tributary Sites 46P101 and 46P102.

3. In-lake pH values either exceeded the limit of 8.3 or were less than 6.5 in 34% of the samples. Tributary Sites 46P101, 46P102 and 46P13Y had pH values less than 6.5 and tributary Sites 46P102 and 46P13Z were observed to have pH values greater than 8.3.

4. Excessive suspended solids were observed at Site 46P104 (42.5 ppm) and 46P109 (118 ppm). Total dissolved solids were not considered to be excessive for maintaining fish life.
5. Excessive levels of un-ionized ammonia were not observed.

6. Nitrate nitrogen concentrations were within the range considered typical of unpolluted freshwaters.

7. Nitrite-nitrogen concentration higher than those considered to be typical of natural water were observed.

8. Based on the organic nitrogen concentrations, Pickerel Lake had a trophic state that ranged from meso-eutrophic to eutrophic. In addition, organic nitrogen appears to be the dominant form of nitrogen in the lake.

9. Based on the inorganic nitrogen concentrations, the trophic state of the lake ranged from oligotrophic to oligo-mesotrophic.

10. Total phosphorus concentrations predict the trophic state of Pickerel Lake to range from oligotrophic to hypereutrophic.

11. Based on the ratio of total nitrogen to total phosphorus, Pickerel Lake may be shifting from a lake that would tend toward phosphorus limited to one that tends toward nitrogen limitation.

12. The trophic state indices calculated from total phosphorus concentrations indicate that total phosphorus is increasing in the lake over time.

13. Nutrient load calculations for total phosphorus and total nitrogen indicate that Pickerel Lake is receiving dangerous loads.

In general, Pickerel Lake is best classified as a eutrophic lake. The lake is very productive for a warm water fishery. The dominant fraction of nitrogen is organic and is probably derived from agricultural loading. Because Pickerel Lake is a popular recreation lake and because it is the deepest natural lake in
South Dakota, emphasis should be placed on the lake to reduce non-point sources of nutrients in order to prevent lake degradation. The indications from the loading data suggest the lake is already receiving a dangerous load.

V. Pickerel Lake Watershed Problems And Recommendations

Problems adversely affecting water quality in Pickerel Lake are identified in the following discussion along with recommendations to alleviate these problems.

In-lake and watershed problems and recommendations are discussed separately. However, it must be remembered that in-lake problems are symptoms of the problems occurring in the watershed. Therefore, actions to mitigate the in-lake problems cannot proceed without concurrent and coordinated work on the watershed problems. In-lake restoration efforts alone would be futile. It should also be noted that the Pickerel Lake project is a preservation project; therefore, the major efforts should go into watershed treatment.

A. Watershed Problems and Recommendations

1. Individual Septic Tank/Drainfield Systems

Problem:

Pickerel Lake waters occasionally exceed the immersion recreation standards for fecal coliforms. Particularly high coliform levels were reported on several sampling dates at tributary Site 46P105 and In-lake Sites 46P107 and 46P108. High levels of fecal coliforms were also observed at tributary Sites 46P101 and 46P102 (Figure 4). These fecal coliform violations suggest that nearby
on-site wastewater disposal systems may be contaminating the lake and some of its tributaries. On May 9, 1980, EPA Infrared photo imagery identified nine (9) homes on the perimeter of Pickerel Lake as having septic tank surface failures. Two are in close proximity to site 46P107 and four are within 0.6 mile of site 46P108 (Figure 3).

Since shoreline development on Pickerel Lake totals well over 300 dwellings it is probable that a number of septic tank surface failures still remain undetected. Dense tree cover obstructed aerial photography of numerous residential lots including those in the heavily developed southern portion of Pickerel Lake. It is possible that more sewage disposal systems are failing around southern Pickerel Lake based on the high concentration of older, well-established homes situated on soils that are poorly suited for sub-surface sewage disposal.

Buse-Barnes Loam, the major soil in the developed area of south Pickerel Lake, is poorly rated due to the absence of adequate permeability. Soil with low permeability can force excessive effluent toward the surface, causing ponding and surface seepage in the vicinity of the disposal system.

Studies at other South Dakota lakes suggest that septic tanks may be contributing more to high in-lake fecal coliform levels and nutrient concentrations than aerial scans have indicated. The aerial scan technique is limited by its ability to detect failure at the soil surface or near surface (increased vegetation growth or retardation of growth). Septic tank surveys at other South
Dakota lakes have revealed that large numbers of septic tanks are deficient with respect to established regulations (e.g. capacity, construction or location); therefore, septic tank contributions to in-lake nutrient and fecal coliform loading may be in excess of that indicated by aerial scans as a result of transmission of the septic tank leachate by the groundwater.

Recommendations:

a. It is recommended that the lake shore property owners form a sanitary district. In addition, a septic tank survey should be conducted to establish the location of the systems, their age, construction, maintenance practices and to identify problems or potential problem areas. If access to a particular septic tank site is not feasible or if information gained by way of a mail or door to door survey is inadequate, septic tank effluent to the lake may be located in-lake by means of a Septic Tank Leachate Detector. If severe problems are found, the sanitary district should initiate procedures necessary for correcting these systems. It should serve as the sponsoring agency in efforts to secure funds for planning and construction of any necessary facilities.

b. Homeowners should be educated in the proper operation and maintenance of septic tanks through public meetings, the media and public information material.
c. Current local and State regulations concerning installation and maintenance of individual wastewater systems should be enforced. Applicable zoning regulations need to be reviewed to determine if they adequately protect the lake.

d. Voluntary compliance to renovate malfunctioning systems needs to be promoted. Compliance and renovation progress need to be monitored, possibly with a Septic Tank Leachate Detector.

2. Watershed Runoff

Problem:

Nutrient loading from the watershed has helped create eutrophic conditions in Pickerel Lake. Conservative estimates based on two tributary sampling sites, 46P104 and 46P105, indicate that Pickerel Lake is still receiving dangerous loads of total phosphorus and total nitrogen. Total phosphorus areal loads were .19 g/m²/yr in 1979 and .08 g/m²/yr in 1982. Corresponding total nitrogen areal loads were 2.65 g/m²/yr and 2.86 g/m²/yr, respectively (Table IV-31, Appendix E). These nutrients originate mainly in runoff from feedlots, livestock feeding stations, cropland and poorly functioning or failing septic tanks. If nutrient loads are not substantially reduced in the foreseeable future, the eutrophication process in Pickerel Lake may be accelerated with resultant dense algal blooms, increased water turbidity, fish kills and water odor problems.
Sediment loading from the watershed (208 tons/year) has not been a major lake-wide problem, although sediments deposited at the north end and at the mouth of Chekapa Creek have created shallow areas favorable for the growth of aquatic vegetation.

Recommendations:

Critical erosion areas identified in the watershed should be prioritized. The Best Management Practices (BMPs) outlined in the SCS report (Table 2) should be implemented as needed in the watershed. Current fertilizer application rates and timing should be determined. An evaluation of this data should be assessed to determine whether fertilizer management practices need to be implemented.

The drainage patterns and nutrient contribution of three feedlots and/or livestock feeding areas in the vicinity of Pickerel Lake (NM26-124-53; NW 23-124-53; SE 27-124-53) should be determined. Other potential problem areas such as probable faulty septic tanks in the vicinity of tributary Sites 46P101 and 46P102 should be located and monitored. Additional monitoring should continue at major tributary sites to more accurately determine the extent and magnitude of watershed nutrient loading into Pickerel Lake.
B. In-Lake Problems and Recommendations

1. Shoreline Erosion

Problem:

Shoreline erosion contributes about 9,310 tons of sediment to Pickerel Lake each year. Although this is nearly 98% of the estimated annual sediment load, it represents only about .04% of the lake volume in acre-feet and therefore does not presently constitute a serious threat to Pickerel Lake. About 55% of the shoreline sediment is derived from two opposite stretches of eroding high banks (segments [12, 13, and 22]=3,000 ft.) north and northwest of the Chekapa Creek Inlet (SCS Soil Erosion and Sediment Yield Study, pp. 12-13), Appendix D).

Recommendation:

Sediment input from the eroding high banks may be greatly reduced by grading to a 3:1 slope and placement of rock fill revetments three feet above the high water line to three feet below normal water levels.

2. Eutrophication

Problem:

The major problem with Pickerel Lake is eutrophication as evidenced by high concentrations of phosphates and organic nitrogen and increasing algal growth. The accumulation of sediment, particularly at the north end of the lake and at the
mouth of Chekopa Creek, results in shallow conditions promoting
the accelerated growth of rooted macrophytes which interfere with
the recreational uses of the lake.

Recommendations:

Watershed treatment will help alleviate the in-lake problems;
however, results may not be appreciably noticeable for a number
of years. The following are suggestions for in-lake treatment
which should be considered:

a. Nitrogen reduction. It has been hypothesized that the high
concentration of organic nitrogen results from the die-off
of nitrogen fixing algae. A complete nitrogen budget for
the lake must be developed to verify this. Available data
are inadequate for the construction of a valid budget. If
this is indeed found to be the major source, a program of
algal harvesting should be initiated.

b. Chemical phosphorous precipitation. This method involves
the application of a chemical such as aluminum sulfate
(alum) to the lake surface to tie up the soluble phosphorus
which forms a precipitate, settles out, and creates a
partial bottom seal. This treatment may have to be repeated
every 1 to 3 years, depending on conditions. Cost estimates
are $333,000 to $350,000 per treatment.

Shoreline property owners should be encouraged to use
detergents with no phosphates. Although this may seem like
an insignificant measure, phosphate input from cleaning
products has been shown to be a major contributing source of the nutrients at other lakes.

c. A feasibility study should be conducted to determine if selective dredging should be undertaken in the north end of the lake. If dredging is identified as a cost effective alternative, efforts should be made to secure funding.

VI. Implementation Activities

Best Management Practices (BMPs) have been implemented on a total of 6% of the land in the Pickerel Lake watershed during the Preservation Project. This brings the total percentage of treated land in the watershed to an estimated 75% from an estimated 68% reported by SCS as adequately treated in 1980.

Establishment of permanent cover through grass seeding was completed on 461 acres in Day County and 107 acres in Roberts County (Day County Conservation District Final Report, 1984, Appendix A). Total ACP cost share funds expended for grass seeding projects was $4,888.00. In addition, 100 acres were placed under the no-till system with $619.00 of ACP cost share funds. Total treated acreage in Day and Roberts Counties amounted to about 668 acres at a total ACP cost share expenditure of $5,507.00.

Five stock dugouts and one animal waste management system for a dairy cattle feedlot were completed in 1982 and 1983. Total ACP cost share of these projects amounted to $6,846.00. In the lakeshore area, several new septic tank systems were installed by cabin owners and a new field drainage system was constructed for Pickerel Lake Lodge.
These measures will help reduce the large phosphorus and nitrogen loads which have been a perennial problem in Pickerel Lake during the study period. Establishment of permanent land cover, particularly on land adjacent to Dry Creek should reduce sediment and nutrient loading to the lake.

Problem areas which still exist in the watershed and lake shoreline include faulty septic tanks on individual cabins, three feedlots with high pollution potential, and soil erosion from inadequately managed farm lands and pastures. There is a need for a comprehensive septic tank survey to determine the extent to which this sector contributes to water quality degradation in Pickerel Lake.

The Pickerel Lake Preservation Project has educated the public on water quality problems associated with Pickerel Lake and solutions to those problems. Local citizens plan to watch for potential pollution situations and work through the local Soil Conservation District, IDNR and other agencies for cooperative corrections or enforcement if needed.

Area farmers were exposed to conservation work and have become more aware of needed BMPs. ASCS has indicated that it will maintain the Pickerel Lake watershed as a high priority for cost-share expenditures. Landowners need to maintain existing BMPs or else any gains in nutrient and sediment reduction will be lost.

Interest is high in establishing a lake management water project district for continued pollution control work. For more information on implementation activities, please see the Day County Conservation District's Final Report on the Pickerel Lake Project (Appendix A).
VII. References Cited

Appendices
Appendix A

Day County Conservation District Final Report
PICKEREL LAKE
PRESERVATION PROJECT

FINAL REPORT
FEBRUARY 14, 1984

PREPARED BY
EDMUND FROMELT
PROJECT COORDINATOR
TABLE OF CONTENTS

I. Introduction
II. Area Description & Watershed
III. Organizational Structure
IV. Work Plan
V. Project Progress Summary
VI. Public Information/Participation
VII. Project Personnel by Agency
I. INTRODUCTION

In the fall of 1980, the Conservation Districts of Day, Marshall and Roberts Counties decided to hire a temporary person to make field contacts and determine if local support warranted the feasibility of a project to preserve the water quality of Pickerel Lake. Mr. Magnus Gilbertson conducted a survey of the area in December 1980.

Several meetings were also held in early 1981 and many local groups, in the area, expressed an interest in the proposed project. On April 1, 1981, the three Districts agreed to sponsor the project and executed a contract with DWNR to develop a plan for improving and maintaining the water quality of Pickerel Lake and the tributary watershed. The contract provided for a completion date of one year, however, an addendum was signed to extend the contract to terminate February 14, 1984.
II. AREA DESCRIPTION & WATERSHED MAP

Pickerel Lake is the uppermost lake in a chain of lakes known as the Waubay Lakes Basin. It is a popular recreational lake located in northeastern Day County in the Coteau des Prairies, a hilly plateau of glacial moraine. Pickerel Lake is the deepest natural lake in South Dakota, with maximum depth of 43 feet and mean depth of 22 feet. The elongated lake has a surface area of 955 acres and 9.4 miles of shoreline. Predominant bottom type is rubble with scattered areas of sand and gravel, however, bays and deeper areas are covered with silt and organic-rich clay.

Total area of the Pickerel Lake Watershed is about 15,000 acres, consisting of two major drainages, three minor drainages, and shoreline that are contributing direct runoff to the lake. The major portion of the area is privately owned. However, several areas adjacent to the lake is Indian administered by the BIA and Sioux-Wapahno-Ne Tribe. Land use is almost entirely related to agriculture. On the shoreline of Pickerel Lake, there are over 330 homes and cabins. It has two State Parks with camping facilities that were utilized by 53,000 people in 1981, 55,000 people in 1982 and 60,000 people in 1983. These yearly increases indicated that public use on Pickerel Lake is growing at a rapid pace and will continue to increase as the travelling public becomes aware of the excellent facilities available on one of the finest lakes in the State.

Attached is a map of the watershed.
III. PICKEREL LAKE PRESERVATION PROJECT

ORGANIZATIONAL STRUCTURE

DEPT. OF WATER & NUTRITIONAL RESOURCES

UNITED STATES DEPARTMENT OF AGRICULTURE

ENVIRONMENTAL PROTECTION AGENCY

PICKEREL LAKE PROJECT COORDINATOR

TASK FORCE COMMITTEE PICKEREL LAKE

SOUTH DAKOTA DEPARTMENT OF GAME FISH & PARKS

ROBERTS COUNTY CONSERVATION DISTRICT BOARD OF SUPERVISORS

DAY COUNTY CONSERVATION DISTRICT BOARD OF SUPERVISORS

MARSHALL COUNTY CONSERVATION DISTRICT BOARD OF SUPERVISORS

COUNTY COMMISSIONERS (DAY, ROBERTS, MARSHALL)

TECHNICAL ADVISORY COMMITTEE - S.C.S.

CONSERVATION COMMISSION (SOUTH DAKOTA)

DAY COUNTY EXTENSION AGENT

LOCAL ORGANIZATIONS
IV. WORK PLAN

In May 1981, a work plan was prepared listing the objectives and goals for Pickerel Lake. The Plan has been our "Bible" and is a valuable tool that provides guidance in the procedures to be used towards our goal of preserving and improving the water quality of the lake.

The major activities of the Plan have been combined into specific categories and are listed in this report. A copy of the Plan is appended with notations on the progress of our goals and objectives.
OBJECTIVE: Assist and encourage land users in the project area to implement soil conservation practices to improve water quality.

GOALS
A. Identify land areas that need additional land treatment.
B. Provide planning and technical assistance to the owners and users of that land.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>WHO</th>
<th>HOW</th>
<th>WHEN</th>
<th>PROGRESS</th>
</tr>
</thead>
</table>
| 1. Identify land areas contributing sediment to the watershed | Task Force, Fromelt, SCS | a. use soil and topography maps
 b. field observation of land areas needing treatment | Sept. | FY-81 FY-82 FY-83 | Completed |
| 2. Identify feedlots contributing to poor water quality | Fromelt, SCS, Fromelt | a. field observation
 b. contact feedlot users
 c. determine capacity and usage | Oct. | | Completed |
| 3. Determine Crop Rotation Patterns-SCS | | a. interview selected land users
 b. field observations | July | | Continuous |
| 4. Determine severity and location of shoreline and bankside erosion | SCS, Fromelt | a. field observation | June | | Completed |
| 5. Develop priority list of land users needing planning and technical assistance | Fromelt | a. develop list of prospects
 b. identify land users who are District cooperators and non cooperators
 c. determine conservation practices needed in project area
 d. prepare cost-benefit data for practices | Aug.
 Aug.
 June
 Sept. | | Completed |
| 6. Promote use of special ACP funds for conservation practices | Fromelt | a. contact land users needing conservation practices
 b. prepare news releases emphasizing availability of additional cost-share funds
 c. develop visual display for use in SCS and ASCS offices promoting special ACP funds for Project area | June-Sept.
 June
 Oct. | | Continuous
 | Maps on display |
GOALS

A. Prepare and update a comprehensive plan for improving water quality in the Pickerel Lake watershed.
B. Establish baseline data for land use, water quality and runoff into Pickerel Lake so effectiveness of practices can be evaluated.
C. Establish a plan to handle any funds received from Federal, state or local sources.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>WHO</th>
<th>HOW</th>
<th>WHEN</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establish land use and treatment status</td>
<td>Fromelt</td>
<td>a. determine conservation planning and practice needs by use of followup contacts and field observation</td>
<td>FY-81 April FY-82 FY-83</td>
<td>Continuous</td>
</tr>
<tr>
<td>2. Determine cost of practices</td>
<td>SCS, Fromelt</td>
<td>a. estimate total cost and amount of ACP cost-sharing by determining extent of needed practices</td>
<td>Aug.</td>
<td>Completed</td>
</tr>
<tr>
<td>3. Establish ACP cost-share rates</td>
<td>ASCS Co. Comm.</td>
<td>a. develop list of conservation practices that can be used in project area</td>
<td>July</td>
<td>Completed</td>
</tr>
<tr>
<td>4. Assess possible septic tank seepage around the lake</td>
<td>Fromelt</td>
<td>a. conduct septic tank survey</td>
<td>June</td>
<td>Survey Made</td>
</tr>
<tr>
<td>5. Determine if other measures are necessary to control problems of sewage pollution around the lake</td>
<td>Fromelt</td>
<td>a. contact DHNR to assist in developing plan to control sewage pollution of cabin owners around the lake</td>
<td>July</td>
<td>When need arises</td>
</tr>
<tr>
<td>6. Act as project officer for any grants on the project & administer accounts involving Federal, State & local funds.</td>
<td>Fromelt</td>
<td>a. with DHNR, seek and obtain implementation funds from local, industrial, state and federal sources</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. set-up adequate fiscal accounting system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Handle the distribution of funds from said accounts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. assist sponsors in developing their financial plans - assist sponsors in contacting local agencies that will be making financial contributions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVE III Develop and maintain working relationships with all agencies who will be assisting in the Birkhake Lake Project.

GOALS
A. Participation by all agencies for the improvement of water quality in the project area.
B. Develop lines of communication among staff personnel of involved agencies.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>WHO</th>
<th>HOW</th>
<th>WHEN</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop and maintain lines of communication with agency personnel</td>
<td>Fromelt</td>
<td>a. prepare and update a directory of agency personnel assigned to the project</td>
<td>July</td>
<td>Completed</td>
</tr>
<tr>
<td>2. Develop lines of communication with sponsors</td>
<td>Fromelt</td>
<td>a. prepare directory of project advisory group members</td>
<td>July</td>
<td>Completed</td>
</tr>
</tbody>
</table>

OBJECTIVE IV Assist sponsors and other cooperating agencies in monitoring operations to determine the effectiveness of various land treatment measures.

GOALS
A. Establish a system of monitoring runoff and lake water that will provide data for evaluation of practices in the project area.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>WHO</th>
<th>HOW</th>
<th>WHEN</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assist in establishing water quality monitoring stations</td>
<td>Bjork</td>
<td>a. locate sites in drainage area that will effectively monitor water quality</td>
<td>May</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. establish procedure for collecting water samples and submitting them to the lab for testing</td>
<td>June</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. take water samples twice a month during summer and once a month during the winter</td>
<td>Continuous</td>
<td></td>
</tr>
</tbody>
</table>
GOALS

A. Inform general public of project activities and the importance of maintaining or improving water quality in the project area.

B. Inform land owners and users of the assistance available for conservation practices.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>WHO</th>
<th>WORK</th>
<th>WHEN</th>
<th>PROGRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop information dissemination plan for project period</td>
<td>Fromelt</td>
<td>a. form information advisory committee composed of representatives from agencies involved in the project</td>
<td>Aug.</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. set up schedule of news releases</td>
<td>June</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. develop brochure explaining project</td>
<td>Oct.</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. secure documentary pictures of recreation use & BMP in watershed</td>
<td>Oct.</td>
<td>Still in progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e. prepare slide show for group presentations</td>
<td>Aug.</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f. prepare news releases keying on special project ACP cost-sharing advantages</td>
<td>Sept.</td>
<td>Continuous</td>
</tr>
<tr>
<td>2. Develop plan for agency reports</td>
<td>Fromelt</td>
<td>a. prepare & submit monthly progress report</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. prepare & submit annual progress report</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. prepare & submit final report at end of project</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
A. Water Quality Objectives

The water quality objectives are dictated by the necessity to protect the natural water courses and lakes from further pollution and contamination by human activities. The primary goal of the South Dakota Statewide "208" Water Quality Management Plan is to improve and maintain water quality for the maximum beneficial uses by present and future generations of South Dakotans. The objectives to achieve this goal are as follows:

1. To eliminate or reduce underground seepage from septic tank systems into the lakes and watersources within the watershed.
2. To prevent contamination of underground water supplies by infiltration of wastewater effluents.
3. To eliminate or reduce above ground accumulations of unabsorbed effluents, plant nutrients or other pollutants which ultimately are washed into the streams and lakes.
4. To eliminate or reduce erosion caused by human activities which are contributing sediments to the streams and lakes.
5. To restore and improve the water quality of Pickerel Lake by the elimination or reduction of pollutants entering the lake.
8. Water Sampling

Water sampling plays an important part in determining the amount of nutrients in the lake. Monitoring the water quality from in-lake sampling and runoff should provide information on the amount of nutrients and sediment entering the lake. In-lake sampling was taken twice a month during the summer months and once a month during the winter season (weather permitting).

There was no spring run-off in 1981 as we received only traces of snow through the winter. In 1982 runoff was quite heavy. On March 15th Checkpa Creek started running and flow measurements were 34" deep thru a 60" culvert and 10" deep thru a 36" culvert. The north creek started running thru the bridge on March 31st. Flow measurements were 30" deep. Runoff continued on these two tributaries until May 19th on the north creek and flow on Checkpa Creek was last checked on June 7th. Water samples were taken 4 days a week during the period. Runoff in 1983 was practically nil. On April 18, Checkpa Creek started running and flow measurements were 32" deep thru a 60" culvert. This lasted for a couple days and then the flow dropped to around 9" which is the normal flow from the springs located along Checkpa Creek. The tributary to the north amounted to a trickle for a couple of days.

Attached is a map showing the various sample sites. Observations up to the present time indicate the water quality to be good with respect to the following tests:

1. Dissolved oxygen has ranged from 7.0 to 13.0 mg/l. (Quality Standard to be above 5.0 mg/l.)
2. PH has consistently been between the allowable variation of 6.5 and 8.3.
3. Temperature has not exceeded 80° F.
We have no information on nutrients, suspended solids, etc.
The results of a laboratory analysis on water samples submitted
to DWNR has not been received as yet.
C. ACP FUNDING

An application for special ACP funds was made and an allocation of $30,000 received for the Pickerel Lake Project. These funds were for use in the watershed covering the counties of Day, Marshall and Roberts.

The following table is a summarization of ACP funds expended on projects for the years 1981 through 1983.

1982

Day County

SL-1 Establishment of Permanent Cover (grass seeding)

<table>
<thead>
<tr>
<th>Farms</th>
<th>Acres</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>304.5</td>
<td>$2,781.00</td>
</tr>
</tbody>
</table>

SL-6 Stock Dugouts

<table>
<thead>
<tr>
<th>Farms</th>
<th>Acres Served</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>359.0</td>
<td>$3,110.00</td>
</tr>
</tbody>
</table>

Roberts County

SL-1 Establishment of Permanent Cover (grass seeding)

<table>
<thead>
<tr>
<th>Farm</th>
<th>Acres</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107.0</td>
<td>$979.00</td>
</tr>
</tbody>
</table>

SL-6 Stock Dugouts

<table>
<thead>
<tr>
<th>Farm</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1,111.00</td>
</tr>
</tbody>
</table>

TOTAL $7,981.00

1983

Day County

SL-1 Establishment of Permanent Cover (grass seeding)

<table>
<thead>
<tr>
<th>Farms</th>
<th>Acres</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>156.3</td>
<td>$1,128.00</td>
</tr>
</tbody>
</table>

SL-15 No-Till Systems

<table>
<thead>
<tr>
<th>Farm</th>
<th>Acres</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0</td>
<td>$619.00</td>
</tr>
</tbody>
</table>

TOTAL $1,747.00
Day County

WP-4 Animal Waste Disposal

1 farm $2,657.00

TOTAL $2,657.00

TOTAL EXPENDITURES $12,385.00

After consulting with SCS personnel on the use of ACP monies, we decided to set forth a practical goal of land treatment on lands in the Pickerel Lake Watershed. The special ACP fund set up for this purpose should be used only for cost-sharing the BPMs listed below:

1. Grass Seeding, SL-1; SL-2
2. Animal Waste Systems directly related to contributing pollution to a stream or tributary that flows into the lake, WP-4
3. Grassed Waterways, WP-3
4. Stock Dugouts, SL-6
5. Sediment Settling Wildlife Developments, WL-1; WL-2
6. Field Windbreaks, SL-7
7. Small Retention Sediment Dams, WP-1
8. Stripcropping - Terraces, SL-3; SL-4
9. No-Till seeding, SL-15
V. PROGRESS SUMMARY

A review of the accomplishments on the Pickerel Lake Project show that in addition to ACP practices on the watershed, many areas around the lake received our attention. These were as follows:

1. Construction of a new field drainage system for the Pickerel Lake Lodge.

2. Several new septic tank systems installed by cabin owners.

3. A septic tank survey of homes around the lake.

4. Distribution of brochures in the two State public parks & other public places.

Considerable time was spent in gathering information on a Septic Leachate Detector. It is felt this type of equipment would be a valuable tool in locating and determining the amount of pollution that may be entering the lake. According to the Swanson Environmental, Inc. of Wisconsin, the cost is around $14,000. We tried to arrange a demonstration last fall, but cold weather was upon us before anything could be done.

There has been considerable interest in the establishment of a Lake Association District similar to the type now in use in the state of Wisconsin. It is hoped the State Legislature will pass legislation to make this possible. Many people feel having a Lake District would provide more funds for any projects the people are interested in doing.

Above all, it is felt the most important part of this project was making the people aware of the dangers of pollution and finding the solutions to combat this problem. Also stressing how important it is to maintain a clean lake for our present generation and for all our people in the future.
In conclusion, I wish to mention that a lot of the credit for work done on this project is due to the untiring efforts of Jim McFadden, Chm. of our Task Force. He has spent many hours and personal expense in promoting ideas to maintain and improve the quality of water in Pickerel Lake. Also, Mr. Lowell Noeske, Day County S.C.S., supervisors and the Day County District Board assisted in every way possible on all projects undertaken. It was a pleasure to work with these people.
VI. PUBLIC INFORMATION/PARTICIPATION

Evaluation of public input and comments received indicate there is general support for implementation of a program to reduce pollution within Pickerel Lake and its tributary watershed. The following is a summary of meetings held.

On Sept. 22, 1980, a public meeting was held at the County Courthouse to discuss the preservation of the water quality in Pickerel Lake. A letter was received from the Pickerel Lake Assoc. South End expressing their support. There was no opposition to the project. On Nov. 25, 1980, the Day SCD Board met with supervisors from Marshall and Roberts SCDs to discuss the Pickerel Lake Project. It was resolved that the three SCDs would sign a joint powers agreement and hire Magnus Gilbertson for 1 month to make contacts in the watershed.

A meeting was held in Eden, SD on March 23, 1981 with Tim Bjork, DWNR, Pierre, presiding. All three counties, Day, Roberts and Marshall agreed to sign a cooperative agreement with DWNR covering the work to be done on the Pickerel Lake Project. There were 15 people present at this meeting.

Prepared brochure and issued newsletters on Pickerel Lake.
VII. PROJECT PERSONNEL BY AGENCY

SOUTH DAKOTA DEPT. OF WATER AND NATURAL RESOURCES (DWNR)

Warren R. Muefeld, Secretary
DWNR
Poe Foss Building
Pierre, S.D. 57501

William Markley, 208 Coordinator
DWNR
Joe Foss Building
Pierre, S.D. 57501

Herb Davis, Soil Scientist
DWNR
Joe Foss Building
Pierre, S.D. 57501

Tim Bjork, Environmental Specialist
Division of Water Quality
DWNR
Joe Foss Building
Pierre, S.D. 57501

FARMERS HOME ADMINISTRATION (FmHA)

Dexter Cundey, State Director
FmHA
200 1st St. S.W.
Huron, S.D. 57350

James Madsen, County Supervisor
FmHA
Webster, S.D. 57274

SOUTH DAKOTA DEPT. OF GAME, FISH & PARKS (SDGF&P)

Jack Harbin, Secretary
Dept. Game Fish & Parks
Anderson Building
Pierre, S.D. 57501

Doug Hanson
S.D. Game, Fish & Parks
603 E 8th Ave.
Webster, S.D. 57274

SOIL CONSERVATION SERVICE (SCS)

William J. Parker
SCS
SCS Sub-Committee
Box 2890
Washington, D.C. 20013

R.D. Swenson, St. Conservationist
SCS
Federal Building
Huron, S.D. 57350

Lowell P. Noeske
District Conservationist
Day Co. Conservation District
710 Main
Webster, S.D. 57274

Janet Marx
District Business Manager
Day Co. Conservation District
710 Main
Webster, S.D. 57274

AGRICULTURAL STABILIZATION & CONSERVATION SERVICE (ASCS)

Dale Andersen, St. Executive Director
ASCS
Federal Building
Huron, S.D. 57350

Dale Cundy, ACP Program Specialist
ASCS
Federal Building
Huron, S.D. 57350

Guy Gleason, Co. Executive Director
ASCS
Webster, S.D. 57274
VII. PROJECT PERSONNEL BY AGENCY

ROBERTS & MARSHALL COUNTY CONS. DIST. BOARD (SCD)

111 Nygaard, Chm.
County SCD
Box 7
Rapid City, S.D. 57701

Bud Tedin, Chm.
Rust Co. SCD
Rapid City, S.D. 57701

Dale W. Peters, Chm.
Hall Co. SCD
Yankton, S.D. 57445

DEPT. OF AGRICULTURE

R. Harper, Division of Conservation
Pennington Building
Rapid City, S.D. 57701
The work accomplished in the watershed and lake shoreline does not represent the total needs. Several problem areas still exist. These include faulty septic systems on individual cabins, three feedlots with high pollution potential and soil erosion from farmlands, grazed pastures and shoreline. The project has aroused the public view toward water quality. Local citizens plan to watch for potential pollution situations and work through the local Soil Conservation District for cooperative corrections or enforcement if needed. The area farmers were exposed to conservation work and are becoming aware of needed conservation land treatment. ASCS has indicated interest in maintaining high priority for cost-share expenditures in the area. Interest is high in establishing a lake management district for taxation and pollution control work.

All the tools are in place to continue lake preservation work. The pace will be slowed due to manpower shortage and reluctance in landowner cooperation.
A total of 3% of the land in the Pickerel Lake Watershed was treated during the Pickerel Lake Preservation Project which brings the total percent of the land in the watershed that is treated to around 80%.

In conclusion, I wish to mention that a lot of the credit for work done on this project is due to the untiring efforts of Jim McFadden, Chm. of our Task Force. He has spent many hours and personal expense in promoting ideas to maintain and improve the quality of water in Pickerel Lake. Also, Mr. Lowell Noeske, Day County S.C.S., supervisors and the Day Coutny District Board assisted in every way possible on all projects undertaken. It was a pleasure to work with these people.
C. ACP FUNDING

An application for special ACP funds was made and an allocation of $30,000 received for the Pickerel Lake Project. These funds were for use in the watershed covering the counties of Day, Marshall and Roberts.

The following table is a summarization of ACP funds expended on projects for the years 1981 through 1983.

<table>
<thead>
<tr>
<th>Year</th>
<th>County</th>
<th>Project Description</th>
<th>Farms/Acres</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Day</td>
<td>Establishment of Permanent Cover (grass seeding)</td>
<td>7 farms (304.5 acres)</td>
<td>$2781.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SL-6 Stock Dugouts</td>
<td>4 farms (359.0 acres served)</td>
<td>3,110.00</td>
</tr>
<tr>
<td></td>
<td>Roberts</td>
<td>Establishment of Permanent Cover (grass seeding)</td>
<td>1 farm (107.0 acres)</td>
<td>$979.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SL-6 Stock Dugouts</td>
<td>1 farm</td>
<td>1,111.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>$7981.00</td>
</tr>
<tr>
<td>1983</td>
<td>Day</td>
<td>***SL-1 Establishment of Permanent Cover (grass seeding)</td>
<td>4 farms (156.3 acres)</td>
<td>$1,128.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SL-15 No-Till Systems</td>
<td>1 farm (100.0 acres)</td>
<td>619.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>$1,747.00</td>
</tr>
</tbody>
</table>

***125.3 acres were on Indian owned land.

2 farms ($870.00)
Appendix B

South Dakota Department of Game, Fish and Parks
South Dakota Statewide Fisheries Surveys (GF&P)
Name: Pickerel Lake
At or Near: 2 E., 11 N., of Waubay, SD
Township(s): 124
Range(s): 53
Section(s): 15, 22, 23, 26, 27, 34, 35
Habitat Classification: Perennial
Ecological Classification: Walleye-Panfish-Bass
County(ies):
Population:
- **20 miles:** 7,300
- **40 miles:** 35,400
- **100 miles:** 175,000*
Fishing Water:
- **Perch, Semi-perch:** 11,600 ac
- **Marginal:** 5,300 ac
Source of Information:
1. Fish Lake Survey Report No. 78
2. Game Lake Survey No. 9778
3. Lake File X 4. Gazetteer
5. D-I Report 74
6. 71
7. List of meand. lakes 8. GP&G Map
Dams: Spillway in outlet
Major Drainage Basin: Missouri
Sequence of Waterways to Major Drainage Basin:
Inlet Trib.No.
- **Name:** Chickapaw Cr.
- **Dry Cr. Flow-C.F.S.**
Source of info.: 8, 3
Location:
- **23-124-53**
- **15-124-53**
Outlet Trib.No.:
- **2-124-53**
Watershed Description:
- Approximately 40-50% cultivated land
Watershed Ownership:
- No Data
Benchmark: Water level
- No Data
Full Water Stage:
Additional comments:
Shore Water:
- No Data
Soil:
- No Data
Lake Bottom:
- No Data
Shore Cover:
- No Data
Accessibility:
- Ext.
Erosion & Pollution:
- Siltation at inlet of Chicapaw Creek.
Z. Habitat Cover:
- No Data Dist. North Bay
Z. Shoreline, Submerged Vegetation:
- No Data
Water Plants:
- **Species:** Typha latifolia, Myriophyllum spp., P. richardsonii, Scirpus validus, Ceratophyllum demersum
- **Abundance:** No Data
- **Species:** Lemna minor, L. polyrhiza, Chara spp., Najas flexilis, Ruppia maritima
- **Abundance:** No Data
Algae:
- Page 280

*Population and area values estimated. *
<table>
<thead>
<tr>
<th>Fish Species</th>
<th>No.</th>
<th>Wt.</th>
<th>Gear</th>
<th>Wt. w/c</th>
<th>Trace Rate</th>
<th>Spawning Facilities</th>
<th>S.</th>
<th>Item</th>
<th>Surface S.</th>
<th>Below Ther. 'F.</th>
<th>S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porech</td>
<td>883</td>
<td>132.45</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>Temp. 'F</td>
<td>770</td>
<td>1</td>
<td>10°-760</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rock Bass</td>
<td>46</td>
<td>8.74</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>D.O. - p.p.m.</td>
<td>9.0</td>
<td>1</td>
<td>10°-9.0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bl. Crappie</td>
<td>33</td>
<td>9.57</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>T.Alk. - p.p.m.</td>
<td>230</td>
<td>1</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM Bass</td>
<td>9</td>
<td>0.97</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>SO. - p.p.m.</td>
<td>57</td>
<td>1</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bullhead</td>
<td>43</td>
<td>16.77</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>Cl. - p.p.m.</td>
<td>2.8</td>
<td>1</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walleye</td>
<td>19</td>
<td>38.83</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>T.P. - p.p.m.</td>
<td>0.32</td>
<td>1</td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Pike</td>
<td>52</td>
<td>23.92</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>T.N. - p.p.m.</td>
<td>No Data</td>
<td>No Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluegill</td>
<td>1</td>
<td>0.32</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>Color</td>
<td>No Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Sucker</td>
<td>11</td>
<td>35.81</td>
<td>T</td>
<td>NoData</td>
<td>Good</td>
<td>Secchi Disc Reading</td>
<td>6 ft.</td>
<td>No Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Problems: Abundant carp population.

Notes:
- No known dates
- G. 720

Water Quality (No Data)

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Species</th>
<th>No. Adults</th>
<th>No. Broods</th>
<th>Species</th>
<th>No. Adults</th>
<th>No. Broods</th>
</tr>
</thead>
</table>

Aquatic Furbearer Habitat (No Data)

Other Wildlife (No Data)

Recreational Use

<table>
<thead>
<tr>
<th>Activity</th>
<th>No.</th>
<th>Amount and/or Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Angling</td>
<td>X</td>
<td>Heavy pressure - good for walleye and perch</td>
</tr>
<tr>
<td>Winter Angling</td>
<td>X</td>
<td>Heavy pressure - Good for walleye and perch</td>
</tr>
<tr>
<td>Spear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowmobiling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canoeing</td>
<td>X</td>
<td>Heavy pressure</td>
</tr>
<tr>
<td>Wassailing</td>
<td>X</td>
<td>Heavy pressure</td>
</tr>
<tr>
<td>Picnicking</td>
<td>X</td>
<td>Heavy pressure</td>
</tr>
<tr>
<td>Camping</td>
<td>X</td>
<td>Heavy pressure</td>
</tr>
<tr>
<td>Swimming</td>
<td>X</td>
<td>Heavy pressure</td>
</tr>
</tbody>
</table>

(GF-Form 71-1)
Page 2

281
Additional information: (Netting tables, shoreline seining, other surveys, rough removal, stocking records, etc.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Species</th>
<th>Stage</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>N. Pike</td>
<td>Fry</td>
<td>250,000</td>
</tr>
<tr>
<td></td>
<td>Walleye</td>
<td>Fry</td>
<td>250,000</td>
</tr>
<tr>
<td>1971</td>
<td>N. Pike</td>
<td>Fry</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>Walleye</td>
<td>Fry</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>Walleye</td>
<td>Fgl.</td>
<td>25,000</td>
</tr>
<tr>
<td>1972</td>
<td>N. Pike</td>
<td>Fry</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>Walleye</td>
<td>Fry</td>
<td>500,000</td>
</tr>
<tr>
<td>1973</td>
<td>BGill</td>
<td>Fgl.</td>
<td>11,500</td>
</tr>
<tr>
<td></td>
<td>LM Bass</td>
<td>Fgl.</td>
<td>4,950</td>
</tr>
<tr>
<td>1974</td>
<td>BGill</td>
<td>Fgl.</td>
<td>1,031,460</td>
</tr>
<tr>
<td></td>
<td>Walleye</td>
<td>Fgl.</td>
<td>44,000</td>
</tr>
<tr>
<td></td>
<td>Walleye</td>
<td>Fry</td>
<td>700,000</td>
</tr>
</tbody>
</table>

Management Recommendations:

Continue management as a walleye-panfish lake with walleye stocking as scheduled under the walleye study F-1514. Rough fish should be removed by contract fishermen in the bay areas during the carp spawning period. The structure to control fish movement has been constructed in the culverts under the county highway on the outlet to Waubay Lake will continue to be maintained to prevent fish movement into the lake from the Waubay lakes.

By ____________________________

Date ________________

(CF-Form 71-1)
Page 3

282
NETTING SUMMARY SHEET

LAKE Pickerel
COUNTY
Day
Observer Marrone
Date Sept., 21, 22, 1978
250 ft. Experiment nylon nets

a. Total Gillnet Sets

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>TOTAL CATCH</th>
<th>Ave. Size</th>
<th>Average Catch/Net</th>
<th>Statewide Median/net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perch</td>
<td>883 (80.5)</td>
<td>132.45(49.3)</td>
<td>6.2</td>
<td>0.15</td>
</tr>
<tr>
<td>Rock Bass</td>
<td>46 (4.2)</td>
<td>8.74(3.3)</td>
<td>5.8</td>
<td>0.19</td>
</tr>
<tr>
<td>Bl.Crappie</td>
<td>33 (3.0)</td>
<td>9.57(3.6)</td>
<td>5.5</td>
<td>0.29</td>
</tr>
<tr>
<td>LM Bass</td>
<td>9 (0.8)</td>
<td>0.97(0.4)</td>
<td>5.6</td>
<td>0.11</td>
</tr>
<tr>
<td>Bullhead</td>
<td>43 (3.9)</td>
<td>16.77(6.3)</td>
<td>8.0</td>
<td>0.39</td>
</tr>
<tr>
<td>Walleye</td>
<td>19 (1.7)</td>
<td>38.83(14.5)</td>
<td>15.2</td>
<td>2.04</td>
</tr>
<tr>
<td>N.Pike</td>
<td>52 (4.7)</td>
<td>23.92(8.9)</td>
<td>12.0</td>
<td>0.46</td>
</tr>
<tr>
<td>Bluegill</td>
<td>1 (0.1)</td>
<td>0.32(0.1)</td>
<td>7.0</td>
<td>0.32</td>
</tr>
<tr>
<td>W.Sucker</td>
<td>11 (1.0)</td>
<td>35.81(13.4)</td>
<td>19.6</td>
<td>3.26</td>
</tr>
</tbody>
</table>

b. Trapnet sets 20, mesh size 3/4. Total Pocketnet sets , mesh size

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>TOTAL CATCH</th>
<th>Ave. Size</th>
<th>Average Catch/Net</th>
<th>Statewide Median/net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perch</td>
<td>883 (80.5)</td>
<td>132.45(49.3)</td>
<td>6.2</td>
<td>0.15</td>
</tr>
<tr>
<td>Rock Bass</td>
<td>46 (4.2)</td>
<td>8.74(3.3)</td>
<td>5.8</td>
<td>0.19</td>
</tr>
<tr>
<td>Bl.Crappie</td>
<td>33 (3.0)</td>
<td>9.57(3.6)</td>
<td>5.5</td>
<td>0.29</td>
</tr>
<tr>
<td>LM Bass</td>
<td>9 (0.8)</td>
<td>0.97(0.4)</td>
<td>5.6</td>
<td>0.11</td>
</tr>
<tr>
<td>Bullhead</td>
<td>43 (3.9)</td>
<td>16.77(6.3)</td>
<td>8.0</td>
<td>0.39</td>
</tr>
<tr>
<td>Walleye</td>
<td>19 (1.7)</td>
<td>38.83(14.5)</td>
<td>15.2</td>
<td>2.04</td>
</tr>
<tr>
<td>N.Pike</td>
<td>52 (4.7)</td>
<td>23.92(8.9)</td>
<td>12.0</td>
<td>0.46</td>
</tr>
<tr>
<td>Bluegill</td>
<td>1 (0.1)</td>
<td>0.32(0.1)</td>
<td>7.0</td>
<td>0.32</td>
</tr>
<tr>
<td>W.Sucker</td>
<td>11 (1.0)</td>
<td>35.81(13.4)</td>
<td>19.6</td>
<td>3.26</td>
</tr>
<tr>
<td>Total length in inches</td>
<td>Perch</td>
<td>Rock Bass</td>
<td>BlCrappie</td>
<td>LM Bass</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>3.0 - 3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 - 3.9</td>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 - 4.4</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 - 4.9</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 - 5.4</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5.5 - 5.9</td>
<td>31</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.0 - 6.4</td>
<td>14</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5 - 6.9</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7.0 - 7.4</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5 - 7.9</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0 - 8.4</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5 - 8.9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9.0 - 9.4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9.5 - 9.9</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0 - 10.4</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.5 - 10.9</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0 - 11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5 - 11.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0 - 12.9</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0 - 13.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0 - 14.9</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15.0 - 15.9</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>16.0 - 16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0 - 17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 - 18.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 - 19.9</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20.0 - 20.9</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>21.0 - 21.9</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22.0 - 22.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0 - 23.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0 - 24.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0 - 25.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.0 - 26.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.0 - 27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.0 - 28.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.0 - 29.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0 - 30.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.0 - 31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.0 - 32.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.0 - 33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.0 - 34.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0 - 35.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.0 - 36.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALS | 102 | 46 | 28 | 5 | 23 | 24 | 1 | 11 |
especially game fish, not taken in test nets.
* Others, including yellowfin, snappers, grunts, and other species. Take scale samples from size of fish.
** Young or yearling. Usually not present in the field. Test for size of fish.
*** Group separately. Each species not found in the field. Group separately. Each species not found in the field.
++ Heavy, Moderate, Light, None, etc. + Strong, Moderate, Light. Caim.

** Size and Number

<table>
<thead>
<tr>
<th>C/A</th>
<th>Station #1</th>
<th>Station #2</th>
<th>Station #3</th>
<th>Station #4</th>
<th>Station #5</th>
<th>Station #6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Location on Lake

<table>
<thead>
<tr>
<th>Date</th>
<th>Time of Day</th>
<th>Weather</th>
<th>Water Temperature</th>
<th>Current Direction</th>
<th>Current Speed</th>
<th>Current Depth</th>
</tr>
</thead>
</table>

** Water Temperature

- Temperature of Water: °F
- Current Speed: mph
- Current Depth: ft

** Station Number

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Number of Seine Hauls Made at Each Station In Each Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Mean Size

- Mean size: 1/4 inch square

** Scales Measurements: Length 40 feet, Depth 6 feet

** Notes

- Natural Reproduction of Fish - Shallow Water Setting
Compiled here is a summary of the trawl study data for 1978. There was a total of 30 trawl pulls lasting 4 minutes each. And the Lake was visited on 6 separate days between July 20 and October 30. By Jim Riis

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Number</th>
<th>Size Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walleye fingerlings</td>
<td>26</td>
<td>3.14"-6.0"</td>
</tr>
<tr>
<td>Walleye > 1 yr.</td>
<td>78</td>
<td>7.79"-10.2"</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>2,999</td>
<td>2.0"-6.0"</td>
</tr>
<tr>
<td>Northern Pike</td>
<td>44</td>
<td>6.99"-12.5"</td>
</tr>
<tr>
<td>Spottail Shiner</td>
<td>763</td>
<td>3.0"-4.7"</td>
</tr>
<tr>
<td>Johny Darter</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Rock Bass</td>
<td>224</td>
<td>YOY</td>
</tr>
<tr>
<td>Crapple</td>
<td>17</td>
<td>YOY</td>
</tr>
<tr>
<td>Bullhead</td>
<td>19</td>
<td>1.0"-7.0"</td>
</tr>
<tr>
<td>Brook Sticklebacks</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

Fourth Planning and Development District
II. New Water Quality Study Area (WQSA)

A. WQSA Selection

2. Nominations and Selection of WQSA in District IV

April, 1979

The preparation of this report was financed through a Section 208 Waste Treatment Management Planning Grant from the U. S. Environmental Protection Agency

Prepared by: Fourth Planning and Development District
615 South Main Street
Aberdeen, South Dakota 57401
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. NOMINATION PROCEDURE</td>
<td>4</td>
</tr>
<tr>
<td>III. CRITERIA</td>
<td>5</td>
</tr>
<tr>
<td>IV. LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>V. PUBLIC INTEREST</td>
<td>9</td>
</tr>
<tr>
<td>VI. SUMMARY</td>
<td>10</td>
</tr>
</tbody>
</table>

MAP

Map 1 -- Planning and Development Districts

APPENDICES

- Appendix A -- Ranking Sheets
- Appendix B -- Letters of Support
- Appendix C -- List of Persons Attending Meeting
I. Introduction

On October 8, 1972, the United States Congress enacted the Federal Water Pollution Control Act Amendments. The purpose of these amendments is to attain an interim water quality goal of fishable and swimmable waters by July 1, 1983, and to eliminate the discharge of pollutants into out nation's water by 1985.

Section 208 of these amendments provide, "that an areawide water treatment management process be developed and implemented to assure adequate control of sources of pollutants in each state." To do this, Section 208 calls upon the Governor of the State to designate a state planning agency to be responsible for the conduct and coordination of the required water quality management planning. The designated state planning agency is empowered to delegate portions of its responsibilities to other State, Federal, local or interstate agencies.

On March 23, 1976, Governor Richard F. Kneip designated the South Dakota Department of Environmental Protection as the agency responsible for the water quality management planning process in the State of South Dakota. Subsequently, the Department of Environmental Protection entered into agreements with various State, Federal, and local agencies. These agencies have agreed to participate in the South Dakota water quality management planning process by performing certain activities and providing various outputs to the Department of Environmental Protection. One of the agencies participating in this program is the Fourth Planning and Development District.

The Fourth Planning and Development District is a multicounty planning district whose boundaries were established by Executive Order
of the Governor of the State of South Dakota on December 4, 1970. The District functions under the Joint Exercise of Governmental Powers Act of 1966 (SDCL 1 - 24) and is a voluntary organization of local governments established to work on common problems, policies, and plans in a ten-county area in northeastern South Dakota (Map 1).

As part of its 208 planning responsibilities, the Fourth Planning and Development District agreed to report on the selection and designation process for the 1979 Water Quality Study Area in District IV.
II. Nomination Procedure

Nominations of water bodies (lakes, rivers, streams, etc.) for designation as a Water Quality Study Area (WQSA) within the Fourth Planning District was solicited from the Fourth Planning and Development District Commission.

The Commission was informed of what a WQSA was, who was involved, what the results could lead to, and the criteria that would be used to rank the nominations.

Nominations were open to all commissioners and the following lakes were suggested. Pickerel Lake (Day County), Lake Byron (Beadle County), Lake Eureka (McPherson County), and Cottonwood Lake (Spink County).

The Commission was informed that these would be ranked prior to submitting the nomination to the South Dakota Department of Environmental Protection.

The nominations were ranked by staff, using the criteria noted in Chapter III, and approved by the Commission at the March meeting. The order approved was Pickerel Lake, Lake Byron, Lake Eureka, and Cottonwood Lake.
III. Criteria

Each nominated lake was examined under the same criteria. The criteria established for ranking purposes were the States Lakes Preservation Committee criteria, the South Dakota Lake Significance Ranking criteria, and the availability of soils data for the watershed (see attachments).

The States Lakes Preservation Committee was established by the South Dakota Legislature in 1975 to assist in the identification and classification of lakes in the Northeast Lakes Region of the state. The committee followed the requirements set under Section 314 (a) of PL 92500 to examine the eutrophic condition, to develop recommendations for procedures, processes, and methods to control sources of pollutions. A priority system was developed to combine the general lake quality and cultural factors of the lakes. Various items such as lake depth, lake size, recharge quality, fisheries classification, population density, public access, present usage, and recreation facilities were examined. Lake depth and fisheries classification were weighed higher from the quality aspect, while public water per capita and public facilities investment were weighed higher from the cultural aspect.

The South Dakota Lake Significance Ranking List was also established by the South Dakota Legislature to fulfill Section 314 (a) requirements across the state while also setting the necessary criteria for state lake restoration grant programs. The Lake Significance Ranking List criteria examines the lake's mean depth, surface area, fisheries classification, public access, domestic water supply, public land around the lake, and public facilities available.

The nominated lakes with soils data available within their watershed received points because of the additional cost and manpower required to
complete such a study would be prohibitive within the allotted time frame and responsible recommendations regarding soils preservation could not be established and three recommendations based on soils data would be impaired.

Ranking sheets for the nominated lakes may be found in Appendix A.
IV. Literature Review

Generally, background information concerning the lakes nominated was somewhat limited. Information available, however, provided enough data to rank each lake according to the established criteria. The information gathered came from varied sources, including the South Dakota Department of Environmental Protection, the South Dakota Game, Fish and Parks, the libraries of South Dakota State University, Northern State College, and Huron College. The following depicts data available by lake.

Pickerel Lake

1. Statewide Fisheries Survey, completed 1978

2. Hanson, D. R., 1973 - Watershed Inventory of Waubay Lakes Basin (Pickerel Lake)
 - Eutrophication of South Dakota Lakes - Generalized Model of Nutrient and Sediment Sources to Pickerel Lake

3. Haworth, E. J., 1972 - Dictum Succession in a Core from Pickerel Lake, Northeastern South Dakota

4. Leap, D. L., 1974 - The Glacial Geology and Hydrology of Day County, South Dakota

5. National Eutrophication Survey 1974 - Pickerel Lake

8. Swanson, A. R. - Chemical Swing of Selected South Dakota Lake Sediments - (Pickerel)

Lake Byron

1. Statewide Fisheries Survey, completed 1978
Lake Byron, Cont.

2. National Eutrophication Survey - 1974 - Lake Byron

Lake Eureka

1. Statewide Fisheries Survey, completed 1978

Cottonwood Lake

1. Statewide Fisheries Survey, completed 1978
2. National Eutrophication Survey - 1974 - Cottonwood Lake
V. Public Interest

Pickerel Lake received the most points in the physical measure of the nominated lakes. However, the most important factor to examine before designation was final, was the public support for the water quality study.

The lake associations were notified of the possible designation as a WQSA, and that public support played a major role in getting the study. If they are to have the study done, support must be shown.

Letters of support received by the Fourth Planning and Development District and also the guest list of those who attended the meeting held April 29, 1979, at the Pickerel Lake Lodge may be found in Appendix B and C respectively.
VI. Summary

The ranking of lakes nominated by the Fourth Planning and Development District Commission followed the guidelines set by the South Dakota Department of Environmental Protection.

Pickerel Lake, according to the criteria, received designation as a Water Quality Study Area for 1979. Public interest, as well as the criteria, strongly supported the designation of Pickerel Lake.

The other lakes nominated in rank order were: Lake Byron, Lake Eureka, and Cottonwood Lake.
Appendix A
Lake Pickeral County(ies) Day, Roberts, Marshall

I. Lakes Preservation Committee Criteria

Lake Depth
- 0 0-3 ft
- 1 3-6 ft
- 2 6-9 ft
- 3 > 9 ft

Lake Size
- 0 < 100 acres
- 500-1000 acres
- > 1000 acres

Recharge Quality
- 0 Primarily Surficial Recharge
- 1 Limited Groundwater Recharge evident
- 2 Moderate Groundwater Recharge evident
- 3 Extensive Groundwater Recharge evident

Public Accessability
- 0 none
- 1 Section Line only
- 2 Public Access area
- 3 Public Access (2 or more pts)

Public Water per Capita
- 0 < 4
- 4 5-10
- 7 15-25
- 10 > 50

Public Usage
- 0 Rare
- 3 Slight
- 6 Moderate
- 9 Severe

Public Facility Investment
- 0 none
- 1 0-5
- 2 5-40
- 3 40-100
- 4 > 100

Facilities
- 0 none
- 1 Access
- 2 Boat Ramp
- 3 Basic Facilities
- 4 Amenities short of bathing facilities
- 5 Amenities including bathing facilities

of Points 84 out of 100

II. Detailed Soil Data Available Yes No (22 points)
III. Lake Significance Ranking (State)

Lake Mean Depth

<table>
<thead>
<tr>
<th>Depth</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 ft.</td>
<td>0</td>
</tr>
<tr>
<td>3-6 ft.</td>
<td>6</td>
</tr>
<tr>
<td>6-9 ft.</td>
<td>12</td>
</tr>
<tr>
<td>9-12 ft.</td>
<td>17</td>
</tr>
<tr>
<td>>12 ft.</td>
<td>✔️21</td>
</tr>
</tbody>
</table>

Public Accessibility

<table>
<thead>
<tr>
<th>Access</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No public access</td>
<td>0</td>
</tr>
<tr>
<td>Section line</td>
<td>3</td>
</tr>
<tr>
<td>Public access area (1)</td>
<td>7</td>
</tr>
<tr>
<td>Public access areas (≥2)</td>
<td>✔️10</td>
</tr>
</tbody>
</table>

Surface Area

<table>
<thead>
<tr>
<th>Area</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><100 acres</td>
<td>0</td>
</tr>
<tr>
<td>100-200 acres</td>
<td>2</td>
</tr>
<tr>
<td>200-500 acres</td>
<td>4</td>
</tr>
<tr>
<td>500-1,000 acres</td>
<td>6</td>
</tr>
<tr>
<td>>1,000 acres</td>
<td>✔️8</td>
</tr>
</tbody>
</table>

Domestic Water Supply

<table>
<thead>
<tr>
<th>Supply</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>✔️5</td>
</tr>
</tbody>
</table>

Publicland Adjoining Lake

<table>
<thead>
<tr>
<th>Adjoining</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td><5</td>
<td>1</td>
</tr>
<tr>
<td>5-40</td>
<td>2</td>
</tr>
<tr>
<td>40-100</td>
<td>3</td>
</tr>
<tr>
<td>>100</td>
<td>✔️4</td>
</tr>
</tbody>
</table>

Fisheries Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm water marginal</td>
<td>8</td>
</tr>
<tr>
<td>Warm water semipermanent</td>
<td>12</td>
</tr>
<tr>
<td>Warm water permanent or cold water marginal</td>
<td>✔️17</td>
</tr>
<tr>
<td>Cold water permanent</td>
<td>21</td>
</tr>
</tbody>
</table>

Public Facilities

<table>
<thead>
<tr>
<th>Facilities</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Toilets, picnic tables & garbage</td>
<td>3</td>
</tr>
<tr>
<td>Toilets, picnic tables, garbage & camping (no bath facilities)</td>
<td>6</td>
</tr>
<tr>
<td>All of the above including bath facilities</td>
<td>✔️9</td>
</tr>
</tbody>
</table>

Total Points

Total Points: 175 out of 200

of Points: **69** out of 78
Lake Byron County(ies) Beadle & Spink

I. Lakes Preservation Committee Criteria

Lake Depth

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 ft</td>
<td>0</td>
</tr>
<tr>
<td>3-6 ft</td>
<td>1</td>
</tr>
<tr>
<td>7-9 ft</td>
<td>2</td>
</tr>
<tr>
<td>> 9 ft</td>
<td>3</td>
</tr>
</tbody>
</table>

Lake Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 acres</td>
<td>0</td>
</tr>
<tr>
<td>100-200 acres</td>
<td>1</td>
</tr>
<tr>
<td>200-500 acres</td>
<td>2</td>
</tr>
<tr>
<td>> 500 acres</td>
<td>3</td>
</tr>
</tbody>
</table>

Recharge Quality

<table>
<thead>
<tr>
<th>Quality</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primarily Surficial Recharge</td>
<td>0</td>
</tr>
<tr>
<td>Limited Groundwater Recharge evident</td>
<td>1</td>
</tr>
<tr>
<td>Extensive Groundwater Recharge evident</td>
<td>2</td>
</tr>
</tbody>
</table>

Fisheries Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife</td>
<td>0</td>
</tr>
<tr>
<td>Warm Water Marginal</td>
<td>1</td>
</tr>
<tr>
<td>Warm Water Semi-permanent</td>
<td>2</td>
</tr>
<tr>
<td>Warm Water Permanent</td>
<td>3</td>
</tr>
</tbody>
</table>

Public Accessibility

<table>
<thead>
<tr>
<th>Accessibility</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Access</td>
<td>1</td>
</tr>
<tr>
<td>Boat Ramp</td>
<td>2</td>
</tr>
<tr>
<td>Basic Facilities</td>
<td>3</td>
</tr>
<tr>
<td>Amenities short of bathing facilities</td>
<td>4</td>
</tr>
<tr>
<td>Amenities including bathing facilities</td>
<td>5</td>
</tr>
</tbody>
</table>

Public Water per Capita

<table>
<thead>
<tr>
<th>Capita within 40-mile radius</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.0</td>
<td>0</td>
</tr>
<tr>
<td>1.0-1.5</td>
<td>1</td>
</tr>
<tr>
<td>1.5-2.0</td>
<td>2</td>
</tr>
<tr>
<td>> 2.0</td>
<td>3</td>
</tr>
</tbody>
</table>

Population within 15-mile radius

<table>
<thead>
<tr>
<th>Population</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,000</td>
<td>0</td>
</tr>
<tr>
<td>1,000-2,000</td>
<td>1</td>
</tr>
<tr>
<td>2,000-3,000</td>
<td>2</td>
</tr>
<tr>
<td>> 3,000</td>
<td>3</td>
</tr>
<tr>
<td>5,000-10,000</td>
<td>4</td>
</tr>
<tr>
<td>> 10,000</td>
<td>5</td>
</tr>
<tr>
<td>> 20,000</td>
<td>6</td>
</tr>
</tbody>
</table>

Public Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Slight</td>
<td>1</td>
</tr>
<tr>
<td>Mod. rate</td>
<td>2</td>
</tr>
<tr>
<td>Severe</td>
<td>3</td>
</tr>
</tbody>
</table>

Public Facility Investment

<table>
<thead>
<tr>
<th>Investment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Access</td>
<td>1</td>
</tr>
<tr>
<td>Boat Ramp</td>
<td>2</td>
</tr>
<tr>
<td>Basic Facilities</td>
<td>3</td>
</tr>
<tr>
<td>Amenities short of bathing facilities</td>
<td>4</td>
</tr>
<tr>
<td>Amenities including bathing facilities</td>
<td>5</td>
</tr>
</tbody>
</table>

of Points 72 out of 100

II. Detailed Soil Data Available Yes No (22 points)
III. Lake Significance Ranking (State)

<table>
<thead>
<tr>
<th>Lake Mean Depth</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-3 ft.</td>
</tr>
<tr>
<td>6</td>
<td>3-6 ft.</td>
</tr>
<tr>
<td>12</td>
<td>6-9 ft.</td>
</tr>
<tr>
<td>17</td>
<td>9-12 ft.</td>
</tr>
<tr>
<td>21</td>
<td>>12 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><100 acres</td>
</tr>
<tr>
<td>2</td>
<td>100-200 acres</td>
</tr>
<tr>
<td>4</td>
<td>200-500 acres</td>
</tr>
<tr>
<td>6</td>
<td>500-1,000 acres</td>
</tr>
<tr>
<td>8</td>
<td>>1,000 acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fisheries Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>warm water marginal</td>
</tr>
<tr>
<td>12</td>
<td>warm water semipermanent</td>
</tr>
<tr>
<td>17</td>
<td>warm water permanent or cold water marginal</td>
</tr>
<tr>
<td>21</td>
<td>cold water permanent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Accessibility</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no public access</td>
</tr>
<tr>
<td>3</td>
<td>section line</td>
</tr>
<tr>
<td>7</td>
<td>public access area (1)</td>
</tr>
<tr>
<td>10</td>
<td>public access areas(2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domestic Water Supply</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>if not</td>
</tr>
<tr>
<td>5</td>
<td>if yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Land Adjoining Lake</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>1</td>
<td><5</td>
</tr>
<tr>
<td>2</td>
<td>5-40</td>
</tr>
<tr>
<td>3</td>
<td>40-100</td>
</tr>
<tr>
<td>4</td>
<td>>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Facilities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>toilets, picnic tables & garbage</td>
</tr>
<tr>
<td>6</td>
<td>toilets, picnic tables, garbage & camping (no bath facilities)</td>
</tr>
<tr>
<td>9</td>
<td>all of the above including bath facilities</td>
</tr>
</tbody>
</table>

Total Points 145 out of 200
Lake **Eureka**
County(ies) **McPherson**

I. Lakes Preservation Committee Criteria

<table>
<thead>
<tr>
<th>Lake Depth</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-3 ft</td>
</tr>
<tr>
<td>6</td>
<td>3-6 ft</td>
</tr>
<tr>
<td>12</td>
<td>> 6 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lake Size</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>< 100 acres</td>
</tr>
<tr>
<td>2</td>
<td>100-250 acres</td>
</tr>
<tr>
<td>4</td>
<td>250-500 acres</td>
</tr>
<tr>
<td>5</td>
<td>500-1000 acres</td>
</tr>
<tr>
<td>6</td>
<td>> 1000 acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recharge Quality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Primarily Surface Recharge</td>
</tr>
<tr>
<td>3</td>
<td>Limited Groundwater Recharge evident</td>
</tr>
<tr>
<td>7</td>
<td>Moderate Groundwater Recharge evident</td>
</tr>
<tr>
<td>12</td>
<td>Extensive Groundwater Recharge evident</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fisheries Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Wildlife</td>
</tr>
<tr>
<td>1</td>
<td>Warm Water Marginal</td>
</tr>
<tr>
<td>2</td>
<td>Warm Water Semi-permanent</td>
</tr>
<tr>
<td>17</td>
<td>Warm Water Permanent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Accessibility</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>Section Line only</td>
</tr>
<tr>
<td>5</td>
<td>Public Access area</td>
</tr>
<tr>
<td>9</td>
<td>Public Access (2 or more pts)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Water per Capita</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>> 1.0</td>
</tr>
<tr>
<td>4</td>
<td>.5-1.0</td>
</tr>
<tr>
<td>7</td>
<td>.25-.5</td>
</tr>
<tr>
<td>10</td>
<td>.1-.25</td>
</tr>
<tr>
<td>13</td>
<td>< .1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population within 25-mile radius</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-3,500</td>
</tr>
<tr>
<td>2</td>
<td>3,500-10,000</td>
</tr>
<tr>
<td>3</td>
<td>10,000-20,000</td>
</tr>
<tr>
<td>5</td>
<td>> 20,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Usage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rare</td>
</tr>
<tr>
<td>4</td>
<td>Slight</td>
</tr>
<tr>
<td>9</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Facility Investment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>1</td>
<td>Access</td>
</tr>
<tr>
<td>2</td>
<td>Access plus</td>
</tr>
<tr>
<td>3</td>
<td>Boat Ramp</td>
</tr>
<tr>
<td>4</td>
<td>Basic Facilities</td>
</tr>
<tr>
<td>5</td>
<td>Amenities Short of bathing facilities</td>
</tr>
<tr>
<td>6</td>
<td>Amenities Including bathing facilities</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

of Points **49** out of 100

II. Detailed Soil Data Available **Yes**
No (22 points)
III. Lake Significance Ranking (State) (Lake Eureka continued)

<table>
<thead>
<tr>
<th>Lake Mean Depth</th>
<th>Public Accessibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0-3 ft.</td>
<td>0 no public access</td>
</tr>
<tr>
<td>5 3-6 ft.</td>
<td>3 section line</td>
</tr>
<tr>
<td>12 6-9 ft.</td>
<td>7 public access area (1)</td>
</tr>
<tr>
<td>17 9-12 ft.</td>
<td>10 public access areas(>2)</td>
</tr>
<tr>
<td>21 >12 ft.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Area</th>
<th>Domestic Water Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 <100 acres</td>
<td>0 if not</td>
</tr>
<tr>
<td>2 100-200 acres</td>
<td>5 if yes</td>
</tr>
<tr>
<td>4 200-500 acres</td>
<td></td>
</tr>
<tr>
<td>6 500-1,000 acres</td>
<td></td>
</tr>
<tr>
<td>3 >1,000 acres</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fisheries Classification</th>
<th>Public and Adjoining Lake</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 warm water marginal</td>
<td>0 none</td>
</tr>
<tr>
<td>12 warm water semipermanent</td>
<td>1 <=5</td>
</tr>
<tr>
<td>17 warm water permanent or cold water marginal</td>
<td>2 5-40</td>
</tr>
<tr>
<td>21 cold water permanent</td>
<td>3 40-100</td>
</tr>
<tr>
<td></td>
<td>4 >100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 none</td>
</tr>
<tr>
<td>3 toilets, picnic tables & garbage (no bath facilities)</td>
</tr>
<tr>
<td>6 toilets, picnic tables, garbage & camping (no bath facilities)</td>
</tr>
<tr>
<td>9 all of the above including bath facilities</td>
</tr>
</tbody>
</table>

of Points 38 out of 78

Total Points 109 out of 200
Lake **Cottonwood**
County(ies) **Spink, Hand, & Faulk**

I. Lakes Preservation Committee Criteria

<table>
<thead>
<tr>
<th>Lake Depth</th>
<th>0 0-3 ft</th>
<th>4 3-6 ft</th>
<th>6 7-9 ft</th>
<th>12 > 9 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Size</td>
<td>0 < 100 acres</td>
<td>2 100-200 acres</td>
<td>4 200-500 acres</td>
<td>6 500-1000 acres</td>
</tr>
<tr>
<td></td>
<td>0 < 1000 acres</td>
<td>2 1000-2000 acres</td>
<td>4 > 2000 acres</td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>0 > 30 ft</td>
<td>4 31-60 ft</td>
<td>6 61-90 ft</td>
<td>12 > 90 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Quality</th>
<th>0 Primarily Surface Recharge</th>
<th>3 Limited Groundwater Recharge evident</th>
<th>7 Moderate Groundwater Recharge evident</th>
<th>12 Extensive Groundwater Recharge evident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisheries Classification</td>
<td>0 Wildlife</td>
<td>9 Warm Water Marginal</td>
<td>12 Warm Water Sub-permanent</td>
<td>17 Warm Water Permanent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Accessibility</th>
<th>0 Section Line only</th>
<th>4 Public Access area</th>
<th>6 Public Access (2 or more pta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Water per Capita</td>
<td>0 > 1.0</td>
<td>4 0.5-1.0</td>
<td>6 .25-.5</td>
</tr>
<tr>
<td>Population within 15-mile radius</td>
<td>0 6,3,566</td>
<td>4 3,500-10,000</td>
<td>6 10,000-20,000</td>
</tr>
<tr>
<td>Public Value</td>
<td>0 Fore</td>
<td>6 Slight</td>
<td>9 Mod. Rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Facility Investment</th>
<th>0 none</th>
<th>4 Basic Facilities</th>
<th>6 Amenities short of bathing facilities</th>
<th>9 Amenities including bathing facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres</td>
<td>0 none</td>
<td>1 0-5</td>
<td>2 5-10</td>
<td>3 10-20</td>
</tr>
</tbody>
</table>

of Points **54** out of 100

II. Detailed Soil Data Available **Yes**
No **✓** (22 points)
III. Lake Significance Ranking (State)

<table>
<thead>
<tr>
<th>Lake Mean Depth</th>
<th>Public Accessibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0-3 ft.</td>
<td>0 no public access</td>
</tr>
<tr>
<td>6 3-6 ft.</td>
<td>3 section line</td>
</tr>
<tr>
<td>12 6-9 ft.</td>
<td>7 public access area (1)</td>
</tr>
<tr>
<td>17 9-12 ft.</td>
<td>0 public access areas (≥2)</td>
</tr>
<tr>
<td>21 ≥12 ft.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Area</th>
<th>Domestic Water Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 <100 acres</td>
<td>0 if not</td>
</tr>
<tr>
<td>2 100-200 acres</td>
<td>5 if yes</td>
</tr>
<tr>
<td>4 200-500 acres</td>
<td></td>
</tr>
<tr>
<td>6 500-1,000 acres</td>
<td></td>
</tr>
<tr>
<td>8 >1,000 acres</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fisheries Classification</th>
<th>Public and Adjoining Lake</th>
<th>Public Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 warm water marginal</td>
<td>0 none</td>
<td>0 none</td>
</tr>
<tr>
<td>12 warm water semipermanent</td>
<td>1 ≤5</td>
<td>3 toilets, picnic tables & garbage</td>
</tr>
<tr>
<td>17 warm water permanent or cold water marginal</td>
<td>2 5-40</td>
<td>6 toilets, picnic tables, garbage & camping (no bath facilities)</td>
</tr>
<tr>
<td>21 cold water permanent</td>
<td>4 >100</td>
<td>9 all of the above including bath facilities</td>
</tr>
</tbody>
</table>

of Points 42 out of 78

Total Points 96 out of 200
Dear Mr. O'Hara,

We have owned cottages on Pickeral Lake for over 25 years and are most interested in preserving its beauty. Pickeral Lake is a place we enjoy and love. With the meeting on April 27th, I am in support of the entire lake system and would do anything I can to personally lobby and work to keep the lake safe and beautiful.

Sincerely,

Charles Rathbun
577274
3-9-63
Teaster, S. H.
April 13, 1979

Dear Mr. O'Hara:
I highly support the study of the
Preston River Area Water Study. I
am greatly concerned about sediment
in the lake etc.

Sincerely,

Clara Anderson
Village Board
Webster, S.D.
April 13, 1979

Marvin O. Hara
Webster, S.D.

Dear sir:

I am glad to hear that Pickard Lake has been chosen as a possible water study area.

I am sure something could be done to stop run off sediment from entering the lake.

We hope to have a good record at the Pickard Lake Lodge April 29th.

Yours truly,

Board member South Pickard Lake Cen

Kerman Reef
April 13, 1979.

Dear Sir,

I am glad to hear you are looking for a water study. I have been interested in water study and I had been asking for funding for water study. I look forward to hearing from you soon.

Sincerely,

[Signature]
Jeanne Grover Taylor
1403 North Lincoln
Aberdeen, S. D. 57401

April 12, 1979

Marvin O'Hara
615 South Main Street
Aberdeen, S. D. 57401

Dear Mr. O'Hara:

As a property owner at Pickerel Lake in Day County, South Dakota, I most certainly support a water study program at Pickerel Lake. I understand this study is federally funded and I hope that the good points of this spring-fed and water runoff lake will also be studied as well as any problems. The number of people using the lake and surrounding properties had multiplied in the 30 years that I have had the pleasure of residing at Pickerel during the summer months.

Other than the study, who and what agencies will be advised of the findings and results of the proposed study and what advantages will this study bring to me, as a property owner?

I hope to be able to attend the meeting at Pickerel on April 29, 1979.

Sincerely,

[Signature]
April 4, 1979

Mrs. W.C. Zielbel
4049 Country Club Blvd.
Sioux City, la. 51104

We are unable to attend the meeting of cabin owners being held at the lodge on Pictorial Lake on April 27. However, we are aware that there is money available to keep Pictorial Lake beautiful, safe & clean. If there is a petition that we can sign on a lake, we can write, as like front land owners, we will be glad to do it.

Sincerely,

Mrs. W.C. Zielbel
Mr. Marvin O'Hare
615 S. Main
Aberdeen, South Dakota
57401

Dear Mr. O'Hare:

I received a call from Merle Goedken advising that some funds would be available for maintaining Pickerel Lake.

As a property owner on Pickerel Lake, I would be very interested in how these funds are to be used and would certainly be willing to cooperate in any way we can to put these funds to their best use.

I understand there will be a meeting on April 29th at the Lodge and I will plan on attending.

If there are any further details that you have available, prior to the meeting, I would be pleased to receive them.

Best regards,

BARKLEY AGENCY, INC.

Robert M. Barkley, C.P.C.U.

RMB: sf
This is to advise you we are in favor of the proposed water study area at Petrie Lake.

We will be returning to Dr. Hal the week end of the 29th (from Arizona) therefore we will be unable to attend the meeting.

Mr. & Mrs. John Pagones

MR. J. PAGONES
205 1/2 S. MAIN
ABERDEEN, S.D.
57401
April 17, 1979

Mr. Kevin O’Hara,
615 So. Main Street
Aberdeen, S. Dak. 57401

Dear Mr. O’Hara:

We are glad to hear that Pickeral Lake has been chosen as a possible water study by your commission, and we urge you to give it your full support. Although we reside in California, Pickeral Lake is still our vacation spot for most of nearly every summer, there we own a cottage and a nine-water lot on South End for a future home for some of our family.

Distance prevents our presence on April 29th, but you have our support in favor of the project.

Sincerely,

[Signature]

Lorraine B. and Fred Kocich

14838 Cantara
Panorama City, Calif 91402
April 18, 1979

Mr. Marvin O'Hara
615 So. Main St.
Aberdeen, SD 57401

Dear Mr. O'Hara:

Although I'm not a resident of South Dakota, my wife is (Webster) and we have enjoyed portions of each summer for the past 12 years at our cottage on the south end of Pickerel Lake.

We believe Pickerel Lake is one of the nicest family lakes in South Dakota, a feeling that must also be shared with the South Dakota Parks and Recreation department which supports two separate state parks for camping on the lake, and the state fish and game commission which operates the state fish hatchery near our cottage.

My wife and I wholeheartedly support the planning commission's idea to make a water study of Pickerel Lake and its watershed to help identify problems and sources of problems. Preservation of the lake and it's surrounding beauty must be maintained, and improved, not only for our enjoyment, but for generations to come.

Now is the time to start the study. The threat of an endangered ecology may be too late. Pickerel Lake is a good, a natural place to start.

We appreciate your interest. Thank you, and good luck!

Best regards,

Carter A. Pitts
April 19, 1979

Mr. Marvin O'Hara
615 S. Main Street
Aberdeen, S.D. 57401

Dear Mr. O'Hara:

As a land owner and long time resident of Pickerel Lake I am very interested that this lake be chosen as a water study area by the Fourth Planning District. We have owned our cottage since 1954 and have seen many changes in the lake bed. Weeds which had been cleared some years ago have returned in full force in our bay area. A detriment to fishing, boating, swimming and water-skiers to the point it is almost impossible to enjoy the lake as we once did. Real estate values have risen terrifically in the last 25 years and these will be lost unless the lake is improved so that living on the lake will be enjoyable again.

Please give Pickerel Lake an opportunity to return to the most beautiful lake in South Dakota.

Very truly yours,

[Signature]

Luverne Atkinson
A. P. Box 211
Webster, S.D. 57274
Langford Estates
April 23, 1979

Dear Mr. White:

As a cabin owner at Federal Lake Dam very much interested in it being selected as a water study area.

Yours truly,

Rudolph Pollin
4-23-79

Mr. Martin O'Hara
South Planning District
615 South Main Street
Aberdeen, S.D. Dakota

Dear Mr. O'Hara,

Mrs. Johnson, Secretary of our Pickeral Lake South Park Association has advised us that your Planning District has chosen Pickeral Lake as a possible water study area.

We appreciate your thoughts on such a study, for each year there seems to be more pollution of one type or another in Pickeral Lake. We hope you will select our lake for such a study, or better yet after the study is made, that something be done promptly to reduce the pollutants which run into the lake. Several Speakers from the Game and Fish Dept. have spoken to our Association suggesting that a series of small dams be built
In the 2 creeks running into the North end of the lake. This makes sense to me and I would certainly like to see this or some other plan implemented to keep Pickeral from becoming more polluted or better yet reduce that which we already have.

We look forward to seeing you at the lodge this coming Sunday.

Sincerely,

Fred & Lois Wismatch
1405 East 33rd Street
Sioux Falls, S.D. 57105

(Summer Residents @ Pickeral)
Sioux Falls, S. D.
April 23, 1979

Mr. O'Haer –

I understand that there is a possibility of an allocation of funds for a potential water study at Pickerel Lake and as an interested tax payer, I would be most supportive of such a study.

Not being very informed about such a potential study nor much of an expert on what happens after such a study it make, I would also concern true as a tax payer, since each of us should be doing everything possible to keep taxes in line.

Since Pickerel Lake is one of our most beautiful fresh water lakes in South Dakota we should do everything possible, including a study, to not only help it that way but even improve it in the future.

Yours truly,

Dennis B. Peterson
2605 D. Van Eps
Sioux Falls, S. D. 57105
April 24, 1979

Mr. Marvin O'Hara
615 S. Main St.
Aberdeen, South Dakota 57401

Dear Mr. O'Hara:

It has been brought to my attention that you are the individual that is involved in the promotion of Federal funds to be used at Pickeral Lake in northeastern South Dakota.

I, as a property owner at Pickeral Lake, am very interested in the promotion of the lake. The lake itself is one of the finest that we have in the northeastern part of South Dakota. The people that use the lake during the summer for recreational purposes are of a great number. We at Pickeral Lake have also seen that through the years Pickeral has been one of the few lakes that hasn't gone dry and from that standpoint we know that the springs that feed Pickeral Lake and the run off from the surrounding area has kept the lake at a very good level through the years. Fishing is good. The scenery at the lake is beautiful. I, for one, would be very encouraged to have the lake promoted so that other people will see the facilities that we have and use the lake more. I also feel that by using the funds that you have available for the lake you could enhance this.

I appreciate your concern and hope that you can see your way clear to promote Pickeral Lake.

Thank you very much.

Sincerely,

[Signature]

James Dedrickson

JD/mo
Dear Mr. O’Hara,

We are property owners at the south end of Pickerel Lake. We were informed of the meeting on April 29 to discuss a possible water study of Pickerel Lake.

It is doubtful that we will be able to attend the meeting, however, we want to let you know we are behind the study one hundred percent.

We want our lake included in funding for a water study.

Sincerely,

Rene and Audrey Long
April 23, 1979

Marvin O'Hara
615 S. Main Street
Aberdeen, S. D. 57401

Dear Mr. O'Hara,

I am taking this opportunity in writing to you regarding the possibility of choosing Pickeral Lake as a water study area by your commission. I am sorry that I will be unable to attend the meeting on Sunday, April 29 because of previous commitments. However, I wanted to let you know of my intense interest in this project and that I would like very much to see it done if at all possible. I am originally from Webster and practically grew up at Pickeral Lake. My family has had a cottage there for the past 50 years, and I am now also a proud cabin owner and love the lake and would like to see it stay the jewel that it is.

I feel strongly also, that this is the time that something has to be done and looked into to maintain water quality and proper watershed for the Lake, etc.

I hope that your commission sees it in a favorable light, and will go ahead with the water study they have proposed.

Thank you for your consideration.

Sincerely,

E. H. Peters, M.D.
Dept. of Family Practice
Central Plains Clinic
2727 S. Kiwanis
Sioux Falls, S. D. 57105

EHP/CC
331 N. State Rd.
West Hartford, Conn.
06117 April 23

Dear Mr. O'Hara,

In a letter from a friend, it was learned that my favorite recreation spot, Red Hill Lake, is being considered by local commissions for a re-creation study. We were especially interested in the lighthouse which was built by my husband's grandfather and would like to see the entire area kept beautiful for our children and theirs to come. We will do our part to help make this possible.

I'm eager to hear what will transpire and will count on friends to keep me informed until then. I am at home in Naval Medical Auxiliary and Enlisted Annuity, Mrs. John C. Peters
FARMERS STATE BANK
MEMBER FEDERAL DEPOSIT INSURANCE CORPORATION
MELLETTE, SOUTH DAKOTA 57461

April 26, 1979

Fourth Planning District
615 South Main
Aberdeen, S. Dak. 57401

Re: Water Quality Study Area
Pickerel Lake Watershed

Gentlemen:

I have a place on Chekapa Bay area of
Pickerel Lake.

I won't be able to attend your meeting
of 4/29/79 but would like to go on record
as being in full support of a water quality
study for the Pickerel Lake Watershed.

Very truly yours,

[Signature]
John T. Collins
President.
Langford, South Dakota 57454
April 27, 1979

Forth District Planning Dist.
615 S. Main
Aberdeen, S. Dak. 57401

Gentlemen:

I read your artical in the Aberdeen American News, and will not be able to attend the meeting scheduled for Sunday April 29 at the Pickerel Lake Lodge.

I am very interested in a Pickerel Lake Watershed as a Water Quality Study Area and would assist in any way possible to have this done.

I am a cabin owner on the Lake and know that something will have to be done to presserve our fresh water lakes if they are going to be suitable for years to come for future generations.

Yours very truly,

Leroy Erickson
Langford, S. Dak. 57454
Dear Mary,

As President of Pickeral Lake South Assn, I have heartily endorsed your work. Many from our association plan to attend a meeting we are having on Sunday, April 30th at 1:00 P.M. at Pickeral Lake Lodge. We hope you can be there.

We have contacted others around the area to spread the word and to learn more of your plans.

Looking forward to seeing you.

Merle Goedken
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Resident or Landowner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Roller</td>
<td>DEP</td>
<td></td>
</tr>
<tr>
<td>Vincent Lentzner</td>
<td>So.P. Assoc</td>
<td>yes</td>
</tr>
<tr>
<td>Ed Bauer</td>
<td>So.P. Assoc</td>
<td>yes</td>
</tr>
<tr>
<td>Mrs Ed Bauer</td>
<td>So.P. Assoc</td>
<td>yes</td>
</tr>
<tr>
<td>Sherm Martin</td>
<td>So.P. Assoc</td>
<td>yes</td>
</tr>
<tr>
<td>Peg Morton</td>
<td>So Shore Pickeral Lake</td>
<td>yes</td>
</tr>
<tr>
<td>Mette Pedersen</td>
<td>So. Shore Pickeral Lake</td>
<td>yes</td>
</tr>
<tr>
<td>J. Paul Peterson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dennis D. Peterson</td>
<td>South Lake Park Assoc.</td>
<td>yes</td>
</tr>
<tr>
<td>Albert Luehr</td>
<td>Tremblant Ltd.</td>
<td></td>
</tr>
<tr>
<td>Val Lackey</td>
<td>Tremblant Ltd.</td>
<td></td>
</tr>
<tr>
<td>Glenn Hildebrung</td>
<td>Hildebrung Ltd</td>
<td></td>
</tr>
<tr>
<td>Ron Hammett</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Lois Hammett</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Jani Holmig</td>
<td>Richard Luehr</td>
<td></td>
</tr>
<tr>
<td>Carsten Pfister</td>
<td>Rainbow Beach Actn.</td>
<td></td>
</tr>
<tr>
<td>J. W. McLeod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dick Yen</td>
<td>Rainbow Beach Actn.</td>
<td></td>
</tr>
<tr>
<td>Bud Larson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward Block</td>
<td>Champion</td>
<td></td>
</tr>
<tr>
<td>Bernard T. Beall</td>
<td>YMCA cand.</td>
<td></td>
</tr>
<tr>
<td>Rich Field</td>
<td>YMCA cand.</td>
<td></td>
</tr>
<tr>
<td>Fred Wesswell</td>
<td>So. Shore Pickeral Lake</td>
<td>Yes</td>
</tr>
<tr>
<td>Lois Wesswell</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Mr. & Mrs. John Luehr</td>
<td>Richard Luehr</td>
<td></td>
</tr>
<tr>
<td>Lewayne Beulken</td>
<td>So. Shore Pickeral Lake</td>
<td>Yes</td>
</tr>
<tr>
<td>Dick R. Eilander Jones</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Resident or land owner</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>28. Mrs. Robert M. Bixby</td>
<td>G.M.A. Red</td>
<td>yes</td>
</tr>
<tr>
<td>29. Mrs. Richard L. Bixby</td>
<td>Beach Club</td>
<td>yes</td>
</tr>
<tr>
<td>30. Harry Hayad</td>
<td>Beach Club</td>
<td>yes</td>
</tr>
<tr>
<td>31. Robert L.</td>
<td>Beach Club</td>
<td>yes</td>
</tr>
<tr>
<td>32. Cheryl McKee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Mr. & Mrs. Dale McKee</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>35. Linton B. Hinds</td>
<td>Ramona Beach</td>
<td>yes</td>
</tr>
<tr>
<td>36. Robert F. Corder</td>
<td>Ramona Beach</td>
<td>yes</td>
</tr>
<tr>
<td>37. Mr. & Mrs. Herman Reff</td>
<td>Pheasent Lake</td>
<td>yes</td>
</tr>
<tr>
<td>38. L. C. Larker</td>
<td>Chekapa Bay</td>
<td>yes</td>
</tr>
<tr>
<td>39. Robert B.</td>
<td>Chekapa Bay</td>
<td>yes</td>
</tr>
<tr>
<td>40. H. E. Earl</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>41. Neal Jordon</td>
<td>Beach Club</td>
<td>yes</td>
</tr>
<tr>
<td>42. Ordie Beeman</td>
<td>West side</td>
<td>yes</td>
</tr>
<tr>
<td>43. Mary Beth Johnson</td>
<td>S. Park Pheasent Lake</td>
<td>yes</td>
</tr>
<tr>
<td>44. Walter E. Hoof</td>
<td>Boss Beach</td>
<td>yes</td>
</tr>
<tr>
<td>45. E. H. Holcomb</td>
<td>Boss Beach</td>
<td>yes</td>
</tr>
<tr>
<td>46. Sally Hatfield</td>
<td>South Beach</td>
<td>yes</td>
</tr>
<tr>
<td>47. Gerald Hatfield</td>
<td>South Beach</td>
<td>yes</td>
</tr>
<tr>
<td>48. Melvin B.</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>49. Charles Rossano East Shore</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>50. M. O. B.</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>51. Mr. & Mrs. Norman Reff</td>
<td>Ramona Beach</td>
<td>yes</td>
</tr>
<tr>
<td>52. Mr. & Mrs. Trevor</td>
<td>Pheasent Lake</td>
<td>yes</td>
</tr>
<tr>
<td>53. Marvin H.</td>
<td>Michael Sexton</td>
<td>yes</td>
</tr>
<tr>
<td>54. William citrus</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>55. Cornelius Kirby</td>
<td>Pheasent Lake</td>
<td>yes</td>
</tr>
<tr>
<td>56. Jane C. Klein</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Resident?</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Charles Robinson</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Georgiana Bell</td>
<td>ELCP</td>
<td>yes</td>
</tr>
<tr>
<td>Nobby Nelson</td>
<td>East Shore</td>
<td>yes</td>
</tr>
<tr>
<td>Rose Nelson</td>
<td>East Shore</td>
<td>yes</td>
</tr>
<tr>
<td>Stella Nange</td>
<td>North 1st Ave.</td>
<td>yes</td>
</tr>
<tr>
<td>Clarence Nange</td>
<td>"</td>
<td>yes</td>
</tr>
<tr>
<td>Hettie Helflickson</td>
<td>"</td>
<td>yes</td>
</tr>
<tr>
<td>Marvin Helflickson</td>
<td>"</td>
<td>yes</td>
</tr>
<tr>
<td>Teresa Birkeland</td>
<td>"</td>
<td>yes</td>
</tr>
<tr>
<td>Art Birkeland</td>
<td>"</td>
<td>yes</td>
</tr>
<tr>
<td>Ath the Rive</td>
<td>Duncans</td>
<td>yes</td>
</tr>
<tr>
<td>Arden Rive</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Jhuronne McMillan</td>
<td>Hyde Park</td>
<td>yes</td>
</tr>
<tr>
<td>Joe Mcmanus</td>
<td>South West Lane</td>
<td>yes</td>
</tr>
<tr>
<td>Linda Reel</td>
<td>South West Lane</td>
<td>yes</td>
</tr>
</tbody>
</table>
Appendix D

Soil Conservation Service Soil Erosion and Sediment Yield Study
SECTION 208 - WATER QUALITY STUDY AREAS

SOIL EROSION AND SEDIMENT YIELD STUDY

IN

PICKEREL LAKE WATERSHED

DAY, MARSHALL AND ROBERTS COUNTIES, SOUTH DAKOTA

SOIL CONSERVATION SERVICE
U. S. DEPARTMENT OF AGRICULTURE
HURON, SOUTH DAKOTA

ASSISTED BY
SOUTH DAKOTA DEPARTMENT OF WATER AND NATURAL RESOURCES
PIERRE, SOUTH DAKOTA

January 1981
SOIL EROSION AND SEDIMENT YIELD

IN

PICKEREL LAKE WATER QUALITY STUDY AREA

IN

DAY COUNTY, SOUTH DAKOTA

Introduction

Intense use of our natural resources over the years has caused a general deterioration of our environment. Some of our air, soil, and water resources have become polluted. Increased public awareness of this situation helped to bring about the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500). Section 208 of P.L. 92-500 addresses water pollution problems as it calls for management practices "...to be developed and implemented to assure adequate control of sources of pollutants in each state."

The South Dakota Department of Water and Natural Resources has responsibility for formulating a section 208 water quality management plan for South Dakota. The watershed was one of six selected in 1980 for study to facilitate formulation of the plan. (See Figure 1.)

It is generally thought that sediment and nutrients are the principal pollutants in South Dakota lakes and streams. 1/ 2/ 3/

This report outlines more detailed information on soil erosion, sediment sources and quantities, management practices to control sediment, and costs for those practices. This information was developed by the Soil Conservation Service (SCS) for the South Dakota Department of Water and Natural Resources.

1/ Mathew, F.L., "Water Pollution in South Dakota, Part I: Natural Water Quality and Pollution Sources," 1970, South Dakota Water Resources Institute, South Dakota State University, Brookings, South Dakota, 34 pages.

2/ "Development Components of the South Dakota Water Plan, Volume II-B" 1977, Division of Resources Management, South Dakota Department of Water and Natural Resources, Pierre, South Dakota.

Summary

This study has determined relative percentages of erosion and sediment yield from cropland, grassland, gullies, streambanks, and other sources. The Universal Soil Loss Equation and direct volume methods were used to estimate gross erosion which was multiplied by estimated sediment delivery ratios developed by watershed shape analysis to obtain estimated sediment yields.

Sediment was determined to be a pollutant in the Pickerel Lake Water Quality Study Area (WQSA). Best management practices (BMP's) for this state section 208 water quality management plan thus became those management practices that reduced sediment yield.

A review of the Technical Guide for South Dakota (available at offices of the Soil Conservation Service) indicated soil and water conservation practices (management practices) that are potential BMP's. The relationships between runoff, sediment yield, and management practices, were outlined and, coupled with views of SCS district conservationists, a number of BMP's were selected for the WQSA. Costs for BMP's were generally abstracted from the SCS Cost-Return Handbook.

No quantification of reductions in sediment yield due to application of BMP's was attempted. The reasons for this are twofold:
1. The technical data base was inadequate.
2. The potential combinations of BMP's were too great.

Definition and Outline of Study Methods

Erosion

Sheet erosion occurs as water flows overland and moves layers of soil particles loosened by raindrop impact. Rill erosion is movement of soil particles as overland flow concentrates into small channels, or rills, 2 to 12 inches deep. Soil particles are loosened in rills by shear force exerted on the bottom and banks of the rill by the channelized water. Bank sloughing, or miniature landslides, occur as the bottom and lower banks are eroded.

The Universal Soil Loss Equation (USLE), was used to estimate sheet and rill erosion in the WQSA's. SCS personnel familiar with each WQSA derived the data needed for the USLE from their field experience, Section III of the South Dakota Technical Guide and detailed soils maps.

1/ "Sediment yield was Gross Erosion in Minnesota" by O.M. Finkelson, Geologist, SCS, St. Paul, Minnesota 1978.

Sheet and rill erosion from construction sites, roads and roadbanks was estimated using a direct volume method (multiplying the area of erosion by an estimated rate of erosion and the volume weight of the eroding soil). Sample areas were observed in each WQSA and county highway maps were used to expand the sample data.

Gully and streambank erosion is soil moved by water flowing in channels that are greater than 12 inches deep. The mechanisms of loosening and moving soil particles are the same as in rill erosion except for the larger scale. Lake shore erosion occurs as wave action loosens and moves soil particles. The direct volume method was used to estimate gully, streambank, and lake shore erosion. The effects of ice were also considered in the erosion rate. Sample areas were observed in each WQSA and aerial photographs were used to expand the sample data.

Sediment Yield

Sediment yield is the amount of soil removed from a drainage basin. It is measured (or estimated) at a point or a stream channel cross section and only represents a fraction of the total soil eroded in the basin above that point.

In this study, gross erosion was estimated and then multiplied by an estimated sediment delivery ratio to obtain sediment yield. This ratio is expressed as a percent and represents the amount of soil removed from a watershed (sediment) divided by the amount of soil moved in the watershed (erosion). It is thus inversely proportional to the amount of deposition occurring between points of erosion and the point where sediment yield is measured.

Many factors affect sediment yield - watershed size, shape, hydrology, channel density, land use, vegetative cover, geology and topography, soil structure, texture, and permeability. The interaction between all of these factors was subjectively analyzed after a delivery ratio was selected from a drainage area versus delivery ratio curve. This analysis resulted in raising or lowering the curve ratio and the adjusted ratio was used to estimate sediment yield from all sources of sheet and rill erosion. Much higher ratios were used to estimate sediment yield from gully, streambank, and lakeshore erosion.

Narrative Comments (cont.)

Table 2 - "Soil Erosion and Sediment Yield Estimates" lists erosion and sediment yield information. The figures are given by tributaries. They are further broken down by land use, sheet and rill erosion, and other erosion and sediment yields. A final total column shows estimated total tons of sediment per year for the watershed.

No figures were developed showing the extent of soil losses from erosion by wind. It was felt that an estimate of 1 to 1\(\frac{1}{2}\) tons per acre per year could be used if this information is needed.

Table 3 - "Estimates of Best Management Practices (Conservation Practices and Measures) needed for Land Adequately Treated, Including Costs" shows the major land treatment needed in this watershed area. The table also shows estimated amounts and probable costs to get the land in this watershed "adequately treated". It must be kept in mind, that these are "Estimates" only, and that specific practices, and accurate amounts together with precise costs can only be obtained in a planning process with the owners and operators of each tract of land, based on their decisions on how each field is to be used and treated. This study does not show this sort of detailed information.

This study contains a "Shoreline Erosion and Sediment Contributing Area Map". Table 4 lists the amounts of sediment produced from each of the segments shown on the map. The total tons of sediment per year in Table 4 corresponds to the total tons of sediment yield from the lakeshore column in Table 2.
Best Management Practices

The Environmental Protection Agency (EPA) has defined best management practices, as published in the Federal Register, as follows:

"The term, best management practices (BMP), means a practice, or combination of practices, that is determined by a State (or designated areawide planning agency) after problem assessment, examination of alternative practices, and appropriate public participation to be the most effective, practicable (including technological, economic, and institutional considerations) means of preventing or reducing the amount of pollution generated by nonpoint sources to a level compatible with water quality goals (40 CFR Part 130)."

Thus best management practices in section 208 water quality management plans are primarily those management practices that are believed to have a beneficial impact on water quality. Since sediment yield affects water quality adversely in these study areas, management practices that reduce sediment yield will be BMP's. Best management practices were selected from Section III of the South Dakota Technical Guide and costs were taken from the SCS Cost-Return Handbook.

Narrative Comments

The Soil Conservation Service completed a study of the Pickerel Lake Watershed. The purpose of this study was to identify the water erosion and sedimentation problems relative to Pickerel Lake. The watershed was divided into four tributaries. (See Watershed Map)

This study brings out the kinds and amounts of erosion and sedimentation including the location, extent, and whether or not each tributary significantly contributes sediment into Pickerel Lake.

Table 1 shows the present "Land Uses and Estimated Acres Needing Treatment" of the Pickerel Lake Watershed Area. Figures are given for each tributary and a total for watershed. Pickerel Lake Watershed contains 15,025 acres. Figures are given for the following uses: cropland, grassland (both tame and native included), woodland, farmsteads, and urban, and non-sediment contributing areas. Estimated acres are listed for acres adequately treated, and acres needing treatment with recommended Best Management Practices (conservation practices) which will contribute to water quality improvement as well as erosion control on the land in the watershed area.

<table>
<thead>
<tr>
<th>WQSA or SUBWATERSHEDS</th>
<th>LAND USE (Acres)</th>
<th>TREATMENT (Acres and Percent)</th>
<th>LAND USE</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CROPLAND</td>
<td>GRASSLAND</td>
<td>WOODLAND</td>
<td>FARMSTEAD AND URBAN</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>%</td>
<td>AC</td>
<td>%</td>
</tr>
<tr>
<td>Subwatershed "A"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequately Treated</td>
<td>2,066</td>
<td>100</td>
<td>3,836</td>
<td>100</td>
</tr>
<tr>
<td>Needs Treatment</td>
<td>1,240</td>
<td>60</td>
<td>2,685</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>826</td>
<td>40</td>
<td>1,151</td>
<td>30</td>
</tr>
<tr>
<td>Subwatershed "B"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequately Treated</td>
<td>1,595</td>
<td>100</td>
<td>897</td>
<td>100</td>
</tr>
<tr>
<td>Needs Treatment</td>
<td>957</td>
<td>60</td>
<td>628</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>638</td>
<td>40</td>
<td>269</td>
<td>30</td>
</tr>
<tr>
<td>Subwatershed "C"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequately Treated</td>
<td>1,898</td>
<td>100</td>
<td>1,487</td>
<td>100</td>
</tr>
<tr>
<td>Needs Treatment</td>
<td>1,139</td>
<td>60</td>
<td>1,041</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>759</td>
<td>40</td>
<td>446</td>
<td>30</td>
</tr>
<tr>
<td>Subwatershed "D"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequately Treated</td>
<td>1,107</td>
<td>100</td>
<td>650</td>
<td>100</td>
</tr>
<tr>
<td>Needs Treatment</td>
<td>664</td>
<td>60</td>
<td>455</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>443</td>
<td>40</td>
<td>195</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL FOR WATERSHED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequately Treated</td>
<td>6,666</td>
<td>100</td>
<td>6,870</td>
<td>100</td>
</tr>
<tr>
<td>Needs Treatment</td>
<td>4,000</td>
<td>60</td>
<td>4,809</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>2,666</td>
<td>40</td>
<td>2,061</td>
<td>30</td>
</tr>
</tbody>
</table>

1/ Generally, water, marsh and sloughs
<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>WQSA or Subwatershed</th>
<th>Cropland</th>
<th>Grassland</th>
<th>Sub Total</th>
<th>Channels</th>
<th>Lake Shore</th>
<th>Construction 1/</th>
<th>Sub Total</th>
<th>Total</th>
<th>Acre Feet Per Yr.</th>
<th>Percent 3/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subwatershed "A"</td>
<td>Erosion Tons/Yr</td>
<td>5,347</td>
<td>2,532</td>
<td>7,879</td>
<td>6,970</td>
<td>6,970</td>
<td>15,849</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sed. Yield 4/ Tons/Yr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>Subwatershed "B"</td>
<td>Erosion Tons/Yr</td>
<td>4,554</td>
<td>378</td>
<td>4,932</td>
<td>1,593</td>
<td>1,593</td>
<td>6,525</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sed. Yield 4/ Tons/Yr.</td>
<td></td>
</tr>
<tr>
<td>Subwatershed "C"</td>
<td>Erosion Tons/Yr</td>
<td>5,722</td>
<td>547</td>
<td>6,269</td>
<td>747</td>
<td>747</td>
<td>7,016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sed. Yield 4/ Tons/Yr.</td>
<td></td>
</tr>
<tr>
<td>Subwatershed "D"</td>
<td>Erosion Tons/Yr</td>
<td>2,456</td>
<td>335</td>
<td>2,791</td>
<td>747</td>
<td>747</td>
<td>2,791</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sed. Yield 4/ Tons/Yr.</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Erosion Tons/Yr</td>
<td>18,079</td>
<td>3,792</td>
<td>21,871</td>
<td>9,310</td>
<td>9,310</td>
<td>38,197</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sed. Yield 4/ Tons/Yr.</td>
<td>208</td>
<td>9,310</td>
<td>9,310</td>
<td>9,518</td>
<td>9,518</td>
<td>7.3</td>
<td>0.038</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Not estimated, but has high potential - Planned developments should include a sediment control plan for before, during, and after construction.
2/ Tons converted to acre feet. Sediment in lake volume computed at 60 pounds per cubic foot due to sediment being submerged.
3/ Annual sediment yield expressed as a percent of total lake volume. Lake volume of Pickerel Lake is 19,072 acre feet.
4/ Sediment deposited in Pickerel Lake.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland - 6,666 Acres</td>
<td>acre</td>
<td>5</td>
<td>2,066</td>
<td>4,000</td>
<td>1,595</td>
<td>7,975</td>
<td>1,898</td>
<td>1,107</td>
<td>5,555</td>
<td>6,666</td>
<td>33,330</td>
<td>1,107</td>
<td>5,555</td>
<td>6,666</td>
<td>33,330</td>
<td>5,555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation Cropping System</td>
<td>acre</td>
<td>18</td>
<td>1,150</td>
<td>2,300</td>
<td>2,790</td>
<td>120</td>
<td>2,160</td>
<td>142</td>
<td>2,556</td>
<td>80</td>
<td>1,494</td>
<td>80</td>
<td>1,494</td>
<td>500</td>
<td>9,000</td>
<td>500</td>
<td>9,000</td>
<td>500</td>
<td>9,000</td>
</tr>
<tr>
<td>Conservation Tillage System</td>
<td>acre</td>
<td>500</td>
<td>2.5</td>
<td>1,250</td>
<td>2.0</td>
<td>1,000</td>
<td>2.2</td>
<td>1,100</td>
<td>1.3</td>
<td>650</td>
<td>500</td>
<td>660</td>
<td>1,600</td>
<td>600</td>
<td>1,800</td>
<td>600</td>
<td>1,800</td>
<td>600</td>
<td>1,800</td>
</tr>
<tr>
<td>Grazed Waterways</td>
<td>acre</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Grazing</td>
<td>mile</td>
<td>250</td>
<td>1.5</td>
<td>375</td>
<td>1.0</td>
<td>250</td>
<td>1.5</td>
<td>375</td>
<td>1.0</td>
<td>250</td>
<td>5.0</td>
<td>1,250</td>
<td>5.0</td>
<td>1,250</td>
<td>5.0</td>
<td>1,250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour Stripcropping</td>
<td>acre</td>
<td>6</td>
<td>62</td>
<td>372</td>
<td>48</td>
<td>288</td>
<td>57</td>
<td>342</td>
<td>33</td>
<td>198</td>
<td>200</td>
<td>1,200</td>
<td>200</td>
<td>1,200</td>
<td>200</td>
<td>1,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer Use</td>
<td>acre</td>
<td>20</td>
<td>575</td>
<td>5,600</td>
<td>65</td>
<td>1,300</td>
<td>108</td>
<td>2,160</td>
<td>47</td>
<td>940</td>
<td>500</td>
<td>10,000</td>
<td>500</td>
<td>10,000</td>
<td>500</td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned Grazing Systems</td>
<td>acre</td>
<td>634</td>
<td>112</td>
<td>26</td>
<td>43</td>
<td>19</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour & Hayland Planting</td>
<td>acre</td>
<td>694</td>
<td>1,918</td>
<td>448</td>
<td>1,000</td>
<td>20,000</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildlife Upland Habitat, Wet.</td>
<td>acre</td>
<td>4</td>
<td>11</td>
<td>44</td>
<td>3</td>
<td>12</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>20</td>
<td>8</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment Control Measures</td>
<td>acre</td>
<td>2,000</td>
<td>36,000</td>
<td>-</td>
<td>2</td>
<td>4,000</td>
<td>-</td>
<td>20,000</td>
<td>-</td>
<td>40,000</td>
<td></td>
<td>124,660</td>
<td>63.30</td>
<td>124,660</td>
<td>63.30</td>
<td>124,660</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Needed to get "Land Adequately Treated."
3/ On-site investigation and planning are necessary to determine kinds, locations, sizes, extent & costs of practices (BMP's)
5/ Examples of measures are: cover and green manure, crop, filter strips, lined and grassed waterways, diversions, mulching, sediment basins, streambank protection, and critical area planting
6/ Includes 933 acres of non-sediment producing land
Table 4.

Pickerel Lake Shoreline Erosion

<table>
<thead>
<tr>
<th>Segment No.</th>
<th>Sed/Yr (Tons)</th>
<th>Shoreline Length (Ft.)</th>
<th>Sediment produced/ft. of shoreline Tons/lineal foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.40</td>
<td>1,180</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>171.00</td>
<td>950</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>10.13</td>
<td>450</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>28.35</td>
<td>420</td>
<td>0.07</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>200</td>
<td>0.03</td>
</tr>
<tr>
<td>6</td>
<td>54.00</td>
<td>2,000</td>
<td>0.03</td>
</tr>
<tr>
<td>7</td>
<td>157.50</td>
<td>1,750</td>
<td>0.09</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>450</td>
<td>0.23</td>
</tr>
<tr>
<td>9</td>
<td>742.50</td>
<td>3,300</td>
<td>0.03</td>
</tr>
<tr>
<td>10</td>
<td>97.20</td>
<td>3,600</td>
<td>0.05</td>
</tr>
<tr>
<td>11</td>
<td>47.25</td>
<td>1,050</td>
<td>1.25</td>
</tr>
<tr>
<td>12</td>
<td>750.00</td>
<td>600</td>
<td>2.00</td>
</tr>
<tr>
<td>13</td>
<td>3,140.00</td>
<td>1,570</td>
<td>0.03</td>
</tr>
<tr>
<td>14</td>
<td>45.00</td>
<td>1,800</td>
<td>0.11</td>
</tr>
<tr>
<td>15</td>
<td>171.00</td>
<td>1,520</td>
<td>0.11</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1,250</td>
<td>0.23</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>4,150</td>
<td>0.03</td>
</tr>
<tr>
<td>18</td>
<td>28.69</td>
<td>850</td>
<td>0.03</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>1,750</td>
<td>0.03</td>
</tr>
<tr>
<td>20</td>
<td>465.75</td>
<td>3,450</td>
<td>0.14</td>
</tr>
<tr>
<td>21</td>
<td>117.50</td>
<td>2,350</td>
<td>0.05</td>
</tr>
<tr>
<td>22</td>
<td>1,245.00</td>
<td>830</td>
<td>1.50</td>
</tr>
<tr>
<td>23</td>
<td>192.50</td>
<td>2,750</td>
<td>0.30</td>
</tr>
<tr>
<td>24</td>
<td>72.90</td>
<td>1,350</td>
<td>0.05</td>
</tr>
<tr>
<td>25</td>
<td>36.00</td>
<td>400</td>
<td>0.09</td>
</tr>
<tr>
<td>26</td>
<td>405.00</td>
<td>2,250</td>
<td>0.18</td>
</tr>
<tr>
<td>27</td>
<td>52.5</td>
<td>350</td>
<td>0.15</td>
</tr>
<tr>
<td>28</td>
<td>735.00</td>
<td>2,450</td>
<td>0.30</td>
</tr>
<tr>
<td>29</td>
<td>60.00</td>
<td>1,000</td>
<td>0.06</td>
</tr>
<tr>
<td>30</td>
<td>232.88</td>
<td>2,070</td>
<td>0.11</td>
</tr>
<tr>
<td>31</td>
<td>211.50</td>
<td>2,350</td>
<td>0.09</td>
</tr>
<tr>
<td>Total</td>
<td>9,310.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Direct volume method used to compute sediment produced.
Appendix E

Water Quality Summary Tables and Figures
<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46P101</td>
<td>Latitude 45 deg., 31 min., 47 sec.; longitude 97 deg., 16 min., 36 sec.; Township 124N, Range 53W; Section 15; NW1/4, NW1/4, NW1/4, NE1/4. North tributary to Pickerel Lake.</td>
</tr>
<tr>
<td>(PI-1)</td>
<td></td>
</tr>
<tr>
<td>46P102</td>
<td>Latitude 45 deg., 31 min., 42 sec.; longitude 97 deg., 16 min., 29 sec.; Township 124N, Range 53W; Section 15. SW1/4, NE1/4, NW1/4, NE1/4. North-northeast tributary to Pickerel Lake.</td>
</tr>
<tr>
<td>(PI-2)</td>
<td></td>
</tr>
<tr>
<td>46P104</td>
<td>Latitude 45 deg., 30 min., 34 sec.; longitude 97 deg., 15 min., 00 sec.; Township 124N, Range 53W; Section 23. NE1/4, SW1/4, SE1/4, NE1/4. Tributary northeast Inlet to Pickerel Lake.</td>
</tr>
<tr>
<td>(PI-4)</td>
<td></td>
</tr>
<tr>
<td>46P105</td>
<td>Latitude 45 deg., 28 min., 55 sec.; longitude 97 deg., 15 min., 46 sec.; Township 124N, Range 53W; Section 35. NE1/4, NE1/4, SW1/4, NW1/4. Pickerel Lake Inlet at State Fish Hatchery.</td>
</tr>
<tr>
<td>(PI-5)</td>
<td></td>
</tr>
<tr>
<td>46P106</td>
<td>Latitude 45 deg., 30 min., 15 sec.; longitude 97 deg., 16 min., 58 sec.; Township 124N, Range 53W; Section 22. NW1/4, NW1/4, SE1/4, SW1/4. Pickerel Lake outlet at State Park.</td>
</tr>
<tr>
<td>(PI-6)</td>
<td></td>
</tr>
<tr>
<td>46P107</td>
<td>Latitude 45 deg., 31 min., 01 sec.; longitude 97 deg., 17 min., 01 sec.; Township 124N, Range 53W; Section 15. NE1/4, SE1/4, SW1/4, SW1/4. Pickerel In-lake site by northeast shore.</td>
</tr>
<tr>
<td>(PI-7)</td>
<td></td>
</tr>
<tr>
<td>46P108</td>
<td>Latitude 45 deg., 30 min., 03 sec.; longitude 97 deg., 16 min., 03 sec.; Township 124N, Range 53W; Section 23. SW1/4, SW1/4, SW1/4, SW1/4. Pickerel In-lake site by east shore.</td>
</tr>
<tr>
<td>(PI-8)</td>
<td></td>
</tr>
<tr>
<td>46P109</td>
<td>Latitude 45 deg., 28 min., 38 sec.; longitude 97 deg., 16 min., 04 sec.; Township 124N, Range 53W; Section 34. SE1/4, NE1/4, NE1/4, SE1/4. Pickerel In-lake site by south shore.</td>
</tr>
<tr>
<td>(PI-9)</td>
<td></td>
</tr>
<tr>
<td>46P13Y</td>
<td>Latitude 45 deg., 31 min., 46 sec.; longitude 97 deg., 14 min., 52 sec.; Township 124N, Range 53W; Section 14. NE1/4, NE1/4, NE1/4, NE1/4. Northeast tributary to Pickerel Lake.</td>
</tr>
<tr>
<td>(PI-3Y)</td>
<td></td>
</tr>
<tr>
<td>46P13Z</td>
<td>Latitude 45 deg., 30 min., 48 sec.; longitude 97 deg., 16 min., 04 sec.; Township 124N, Range 53W; Section 23. SW1/4, NW1/4, NW1/4, NW1/4. Northeast tributary to Pickerel Lake.</td>
</tr>
<tr>
<td>(PI-3Z)</td>
<td></td>
</tr>
<tr>
<td>46P17A</td>
<td>Latitude 45 deg., 30 min., 55 sec.; longitude 97 deg., 17 min., 22 sec.; Township 124N, Range 53W; Section 16. SE1/4, SE1/4, SE1/4, SE1/4. Pickerel In-lake site by northwest shore.</td>
</tr>
<tr>
<td>(PI-7A)</td>
<td></td>
</tr>
<tr>
<td>46P18A</td>
<td>Latitude 45 deg., 29 min., 55 sec.; longitude 97 deg., 16 min., 00 sec.; Township 124N, Range 53W; Section 26. SE1/4, NW1/4, NW1/4, NW1/4. Pickerel In-lake site by east shore.</td>
</tr>
<tr>
<td>(PI-8A)</td>
<td></td>
</tr>
<tr>
<td>46P19A</td>
<td>Latitude 45 deg., 29 min., 08 sec.; longitude 97 deg., 16 min., 17 sec.; Township 124N, Range 53W; Section 34. NE1/4, NW1/4, NE1/4, NE1/4. Pickerel In-lake site by southwest shore.</td>
</tr>
<tr>
<td>(PI-9A)</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-1. Site numbers and descriptions on Pickerel Lake and its watershed.
Table IV-2

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME DEPTH</th>
<th>T ALK</th>
<th>PH</th>
<th>Fecal Coli</th>
<th>Conductivity</th>
<th>pH - T Alk</th>
<th>Residue</th>
<th>HMF-FCBR AT 25C</th>
<th>Caco3</th>
<th>Total DISS-105</th>
<th>TOT NFLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>20</td>
<td>17</td>
<td>24</td>
<td>23</td>
<td>7.690000</td>
<td>1</td>
<td>24</td>
<td>7.61478</td>
<td>434.041</td>
<td>5.33333</td>
<td></td>
</tr>
<tr>
<td>08/01/01</td>
<td>10.3000</td>
<td>6.5000</td>
<td>3.0000</td>
<td>1</td>
<td>359.000</td>
<td>1</td>
<td>355.000</td>
<td>4.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/01/01</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>397.000</td>
<td>7</td>
<td>7</td>
<td>332.000</td>
<td>1.0000</td>
<td>7.57814</td>
<td></td>
</tr>
<tr>
<td>08/01/01</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>219.000</td>
<td>189.000</td>
<td>1</td>
<td>1</td>
<td>219.000</td>
<td>189.000</td>
<td>30.00000</td>
<td></td>
</tr>
<tr>
<td>08/01/01</td>
<td>28</td>
<td>26</td>
<td>33</td>
<td>23</td>
<td>7.890000</td>
<td>1</td>
<td>33</td>
<td>7.61478</td>
<td>421.577</td>
<td>6.57576</td>
<td></td>
</tr>
<tr>
<td>DATE FROM</td>
<td>NO2-N</td>
<td>NO3-N</td>
<td>KJELDHAL N</td>
<td>T-PHOS</td>
<td>T-PHOS</td>
<td>ORTHO</td>
<td>ORTHO</td>
<td>ORTHO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79/01/01</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81/01/01</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82/01/00</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83/01/00</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84/01/00</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>31</td>
<td>2</td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/00/00</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>31</td>
<td>2</td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-2. Continued
<table>
<thead>
<tr>
<th></th>
<th>DATE</th>
<th>TIME DEPTH</th>
<th>NH3+NH4-</th>
<th>NO2-N</th>
<th>NO3-N</th>
<th>KJELDL N</th>
<th>T-PO4</th>
<th>SOL-PO4-</th>
<th>PHOS-DIS</th>
<th>DISS</th>
<th>P-COL</th>
<th>T-P-COL</th>
<th>ORTHO</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>YEAR</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YEAR</td>
<td>79/01/01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>YEAR</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81/01/00</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82/01/00</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83/01/00</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>YEAR</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-3. Continued
<table>
<thead>
<tr>
<th>DATE FROM</th>
<th>TIME OF</th>
<th>DEPTH T ALK</th>
<th>DO</th>
<th>PH</th>
<th>FEC COLI</th>
<th>CONDUCTIVITY</th>
<th>LAB T ALK</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00431</td>
<td>00300</td>
<td>00400</td>
<td>31616</td>
<td>00095</td>
<td>00403</td>
<td>00410</td>
<td>00500</td>
<td>00515</td>
<td>00530</td>
</tr>
<tr>
<td>YEAR</td>
<td>NUMBER</td>
<td>21</td>
<td>24</td>
<td>32</td>
<td>27</td>
<td>4</td>
<td>32</td>
<td>31</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
<td>12.9000</td>
<td>8.69000</td>
<td>4100.00</td>
<td>8.39000</td>
<td>298.000</td>
<td>591.000</td>
<td>537.000</td>
<td>68.0000</td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
<td>7.10000</td>
<td>5.80000</td>
<td>3.00000</td>
<td>7.80000</td>
<td>263.000</td>
<td>196.000</td>
<td>185.000</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td>9.95237</td>
<td>7.95833</td>
<td>452.812</td>
<td>8.15295</td>
<td>279.500</td>
<td>461.484</td>
<td>450.709</td>
<td>10.5156</td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>01/01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td>13.8000</td>
<td>7.00000</td>
<td>3.00000</td>
<td></td>
<td>369.000</td>
<td>364.000</td>
<td>5.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>13.8000</td>
<td>7.00000</td>
<td>3.00000</td>
<td></td>
<td>369.000</td>
<td>364.000</td>
<td>5.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>13.8000</td>
<td>7.00000</td>
<td>3.00000</td>
<td></td>
<td>369.000</td>
<td>364.000</td>
<td>5.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>13.8000</td>
<td>7.00000</td>
<td>3.00000</td>
<td></td>
<td>369.000</td>
<td>364.000</td>
<td>5.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/01/00</td>
<td>02/01</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td>9.10000</td>
<td>7.60000</td>
<td>50.00000</td>
<td></td>
<td>386.000</td>
<td>44.00000</td>
<td>324.000</td>
<td>3.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>8.20000</td>
<td>6.30000</td>
<td>3.00000</td>
<td></td>
<td>349.714</td>
<td>6.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>8.699999</td>
<td>7.09999</td>
<td>15.5714</td>
<td></td>
<td>349.714</td>
<td>6.00000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>8.78275</td>
<td>7.74062</td>
<td>365.050</td>
<td></td>
<td>8.15295</td>
<td>279.500</td>
<td>439.900</td>
<td>448.000</td>
<td>9.58750</td>
</tr>
</tbody>
</table>

Table IV-3.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DEPTH</th>
<th>T ALK</th>
<th>DO</th>
<th>PH</th>
<th>FEC COLI</th>
<th>CNDUCTVY</th>
<th>LAB T ALK</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FROM</td>
<td>TO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEET</td>
<td>MG/L</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>00431</td>
<td>00300</td>
<td>00400</td>
<td>31616</td>
<td>00095</td>
<td>00403</td>
<td>00410</td>
<td>00500</td>
<td>00515</td>
<td>00530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79/01/01</td>
<td>20</td>
<td>27</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>NUMBER</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82/01/01</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83/01/00</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93/01/01</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94/01/00</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/00/00</td>
<td>2</td>
<td>2</td>
<td>34</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATION NUMBER</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td>26</td>
<td>31</td>
<td>36</td>
<td>26</td>
<td>36</td>
<td>35</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-4.
Table IV-4. Continued

<table>
<thead>
<tr>
<th>DATE FROM</th>
<th>TIME DEPTH</th>
<th>NH3+NH4- N DISS</th>
<th>NO2-N DISS</th>
<th>NO3-N DISS</th>
<th>TOTAL DISS</th>
<th>KJELDahl N</th>
<th>PO4-SOL</th>
<th>PO4-SP</th>
<th>PHOS-DIS</th>
<th>007050</th>
<th>70506</th>
<th>00671</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>NUMBER</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>.1039000</td>
<td>.0100000</td>
<td>.2100000</td>
<td>1.060000</td>
<td>.610000</td>
<td>.157000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0100000</td>
<td>.0100000</td>
<td>.0100000</td>
<td>.0500000</td>
<td>.017000</td>
<td>.0050000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0304705</td>
<td>.0100000</td>
<td>.391176</td>
<td>.754408</td>
<td>.0094114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>NUMBER</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>.0799999</td>
<td>.0100000</td>
<td>.400000</td>
<td>1.720000</td>
<td>.0899999</td>
<td>.0550000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0699999</td>
<td>.0100000</td>
<td>.1000000</td>
<td>.1340000</td>
<td>.0699999</td>
<td>.0450000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0749999</td>
<td>.0100000</td>
<td>.250000</td>
<td>1.530000</td>
<td>.0694999</td>
<td>.0500000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83/01/00</td>
<td>NUMBER</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>.0600000</td>
<td>.0100000</td>
<td>.200000</td>
<td>.490000</td>
<td>.0639999</td>
<td>.0160000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0600000</td>
<td>.0100000</td>
<td>.100000</td>
<td>.420000</td>
<td>.0500000</td>
<td>.0180000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0600000</td>
<td>.0100000</td>
<td>.150000</td>
<td>.450000</td>
<td>.0610000</td>
<td>.0135000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td>NUMBER</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>.100000</td>
<td>.0100000</td>
<td>.210000</td>
<td>1.860000</td>
<td>.610000</td>
<td>.157000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0100000</td>
<td>.0100000</td>
<td>.100000</td>
<td>.0500000</td>
<td>.017000</td>
<td>.0050000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0343684</td>
<td>.0100000</td>
<td>.371052</td>
<td>.779469</td>
<td>.0868681</td>
<td>.0389472</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE</td>
<td>TIME DEPTH</td>
<td>T ALK</td>
<td>Fecal Coli</td>
<td>CNQ TVY</td>
<td>MTH-FCBR</td>
<td>PH</td>
<td>CACO3</td>
<td>Total Diss-105</td>
<td>TOT NFT</td>
<td>RESIDUE</td>
<td>RESIDUE</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>----</td>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>79/01/01</td>
<td>00300</td>
<td></td>
<td>00400</td>
<td>31616</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00300</td>
<td></td>
<td>00400</td>
<td>31616</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00300</td>
<td></td>
<td>00400</td>
<td>31616</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-5.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME DEPTH</th>
<th>NH3+NH4-</th>
<th>NO2-N</th>
<th>NO3-N</th>
<th>KJELDL N</th>
<th>T PO4</th>
<th>SOL PO4-</th>
<th>FMOS-DIS</th>
<th>P-COL</th>
<th>T P-COL</th>
<th>ORTHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FROM</td>
<td>TO</td>
<td>FEET</td>
<td>MH/L</td>
<td></td>
<td></td>
<td>DISS</td>
<td>DISS</td>
<td>TOTAL</td>
<td>DISS</td>
<td></td>
</tr>
<tr>
<td>79/01/01</td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>NUMBER</td>
<td>MAXIMUM</td>
<td>22</td>
<td>.302000</td>
<td>.010000</td>
<td>.400000</td>
<td>.274000</td>
<td>.176000</td>
<td>.120000</td>
<td>.005000</td>
<td>.0281816</td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.020000</td>
<td>.010000</td>
<td>.100000</td>
<td>.200000</td>
<td>.041000</td>
<td>.120000</td>
<td>.120000</td>
<td>.005000</td>
<td>.0281816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0304091</td>
<td>.010000</td>
<td>.295454</td>
<td>.921362</td>
<td>.0714088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td>MAXIMUM</td>
<td>22</td>
<td>.302000</td>
<td>.010000</td>
<td>.400000</td>
<td>.274000</td>
<td>.176000</td>
<td>.120000</td>
<td>.005000</td>
<td>.0281816</td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.020000</td>
<td>.010000</td>
<td>.100000</td>
<td>.200000</td>
<td>.041000</td>
<td>.120000</td>
<td>.120000</td>
<td>.005000</td>
<td>.0281816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0304091</td>
<td>.010000</td>
<td>.295454</td>
<td>.921362</td>
<td>.0714088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-5. Continued
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Depth</th>
<th>T Alk</th>
<th>DO</th>
<th>Ph</th>
<th>FC Coli</th>
<th>Conductivity</th>
<th>Lab</th>
<th>T Alk</th>
<th>Residue</th>
<th>Residue</th>
<th>Residue</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>000300</td>
<td>00400</td>
<td>31616</td>
<td>00095</td>
<td>00403</td>
<td>00410</td>
<td>00500</td>
<td>00515</td>
<td>00530</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>02/01/01</td>
<td>03/01/00</td>
<td>00/00/00</td>
<td>99/99/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-6.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME DEPTH</th>
<th>NH₃+NH₄-</th>
<th>NO₂-N</th>
<th>NO₃-N</th>
<th>KJELDL N</th>
<th>T PO₄</th>
<th>SOL PO₄</th>
<th>PHOS-DIS</th>
<th>ORTHO</th>
<th>00613</th>
<th>00620</th>
<th>00623</th>
<th>70505</th>
<th>70506</th>
<th>00671</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM</td>
<td>OF FEET</td>
<td>MG/L</td>
</tr>
<tr>
<td>79/11/01</td>
<td>NUMBER</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>20.00000</td>
<td>.010000</td>
<td>.300000</td>
<td>1.25000</td>
<td>.119000</td>
<td>.0240000</td>
<td>.0050000</td>
<td>.0079130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0100000</td>
<td>.010000</td>
<td>.100000</td>
<td>.460000</td>
<td>.0070000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.901516</td>
<td>.010000</td>
<td>.117391</td>
<td>.799129</td>
<td>.0436086</td>
<td>.0130000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>NUMBER</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>.1600000</td>
<td>.010000</td>
<td>.100000</td>
<td>.650000</td>
<td>.0410000</td>
<td>.0110000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0400000</td>
<td>.010000</td>
<td>.100000</td>
<td>.110000</td>
<td>.0240000</td>
<td>.0116667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.0799999</td>
<td>.010000</td>
<td>.100000</td>
<td>.460000</td>
<td>.0306666</td>
<td>.0116667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82/01/01</td>
<td>NUMBER</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>20.00000</td>
<td>.010000</td>
<td>.300000</td>
<td>1.25000</td>
<td>.119000</td>
<td>.0240000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>.0100000</td>
<td>.010000</td>
<td>.100000</td>
<td>.110000</td>
<td>.0070000</td>
<td>.0050000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>.606726</td>
<td>.010000</td>
<td>.115364</td>
<td>.759990</td>
<td>.0421153</td>
<td>.0063461</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-6. Continued
<table>
<thead>
<tr>
<th>DATE FROM</th>
<th>TIME DEPTH T ALK</th>
<th>FIELD</th>
<th>00431</th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00095</th>
<th>00403</th>
<th>00410</th>
<th>00500</th>
<th>00515</th>
<th>00530</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>YEAR</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>13.1000</td>
<td>8.60000</td>
<td>55000.0</td>
<td>8.71000</td>
<td>455.000</td>
<td>451.000</td>
<td>27.0000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td>5.90000</td>
<td>6.50000</td>
<td>2.00000</td>
<td>8.40000</td>
<td>337.000</td>
<td>321.000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>8.95624</td>
<td>8.05333</td>
<td>3666.06</td>
<td>8.56624</td>
<td>387.750</td>
<td>378.375</td>
<td>9.43750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>13.1000</td>
<td>8.60000</td>
<td>55000.0</td>
<td>8.71000</td>
<td>455.000</td>
<td>451.000</td>
<td>27.0000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td>5.90000</td>
<td>6.50000</td>
<td>2.00000</td>
<td>8.40000</td>
<td>337.000</td>
<td>321.000</td>
<td>1.00000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>8.95624</td>
<td>8.05333</td>
<td>3666.06</td>
<td>8.56624</td>
<td>387.750</td>
<td>378.375</td>
<td>9.43750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-7.
<table>
<thead>
<tr>
<th>DATE FROM</th>
<th>TIME DEPTH</th>
<th>NH₃+NH₄-</th>
<th>NO₂-N</th>
<th>NO₃-N</th>
<th>TOTAL DISS</th>
<th>KJELDL N</th>
<th>T-PO_4</th>
<th>SOL-PO_4</th>
<th>PHOS-DIS</th>
<th>P-COL</th>
<th>T-P-COL</th>
<th>ORTHO</th>
<th>P-COL</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>00670</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>0.120000</td>
<td>0.010000</td>
<td>0.100000</td>
<td>2.070000</td>
<td>0.0679999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>0.010000</td>
<td>0.010000</td>
<td>0.100000</td>
<td>0.100000</td>
<td>0.0140000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>0.0327500</td>
<td>0.010000</td>
<td>0.0999997</td>
<td>0.080625</td>
<td>0.0356875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>00/00/00</td>
<td>00/00/00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>0.120000</td>
<td>0.010000</td>
<td>0.100000</td>
<td>2.070000</td>
<td>0.0679999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>0.010000</td>
<td>0.010000</td>
<td>0.100000</td>
<td>0.100000</td>
<td>0.0140000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>0.0327500</td>
<td>0.010000</td>
<td>0.0999997</td>
<td>0.080625</td>
<td>0.0356875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-7. Continued
DATE FROM	TIME DEPTH T ALK FIELD	DO	PH	FEC COLI	CHLORIN	LAB CFU	CATHODIC	AT 25C	PH	CACO3	TOT RES	DISS-105	TOT NFT	RESIDUE	RESIDUE	RESIDUE	RESIDUE	
79/01/01																		
YEAR																		
NUMBER																		
MAXIMUM																		
13.1000	16	15	16	2000.00	8.0000	8.0000	439.00	379.250	0.0000	0.0000	329.00	372.00	7.28125					
5.80000		6.8000	6.8000	2.0000	8.3000	321.000	372.000											
6.68749		8.02666	131.687		6.56624	329.000	372.000											
0/0/00/00																		
STATION																		
NUMBER																		
MAXIMUM																		
13.1000	16	15	16	2000.00	8.0000	8.0000	439.00	379.250	0.0000	0.0000	329.00	372.00	7.28125					
5.80000		6.8000	6.8000	2.0000	8.3000	321.000	372.000											
8.88749		8.02666	131.687		6.56624	329.000	372.000											
99/99/99																		

Table IV-8.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>STATION NUMBER</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>MEAN</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00608</td>
<td>.300000</td>
<td>.006000</td>
<td>.0441250</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>80/01/00</td>
<td>00613</td>
<td>.010000</td>
</tr>
<tr>
<td>80/01/00</td>
<td>00620</td>
<td>.100000</td>
</tr>
<tr>
<td>80/01/00</td>
<td>00623</td>
<td>.112000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
<td>.120000</td>
</tr>
<tr>
<td>80/01/00</td>
<td>00671</td>
<td>.0550000</td>
<td>.0020000</td>
<td>.0082500</td>
<td>.0550000</td>
<td>.0020000</td>
<td>.0082500</td>
<td>.0550000</td>
<td>.0020000</td>
<td>.0082500</td>
<td>.0550000</td>
</tr>
</tbody>
</table>

Table IV-8. Continued
<table>
<thead>
<tr>
<th>DATE FROM</th>
<th>TIME DEPTH</th>
<th>TALK</th>
<th>DO</th>
<th>PH</th>
<th>FEC COLI</th>
<th>CONDUCTIVITY</th>
<th>LAB</th>
<th>TALK</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00431</td>
<td>00300</td>
<td>00400</td>
<td>31616</td>
<td>00095</td>
<td>00403</td>
<td>00410</td>
<td>00500</td>
<td>00515</td>
<td>00530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NUMBER</th>
<th>07</th>
<th>15</th>
<th>16</th>
<th>07</th>
<th>15</th>
<th>16</th>
<th>07</th>
<th>15</th>
<th>16</th>
<th>07</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td></td>
<td>8</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>NUMBER</th>
<th>07</th>
<th>15</th>
<th>16</th>
<th>07</th>
<th>15</th>
<th>16</th>
<th>07</th>
<th>15</th>
<th>16</th>
<th>07</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>13.8000</td>
<td>8.6000</td>
<td>140.000</td>
<td></td>
<td>8.73000</td>
<td>182.000</td>
<td>511.000</td>
<td>417.000</td>
<td>118.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.34000</td>
<td>182.000</td>
<td>325.000</td>
<td>313.000</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-9.
<table>
<thead>
<tr>
<th>DATE FROM</th>
<th>TIME DEPTH</th>
<th>MO3+K4H4-</th>
<th>NO2-N</th>
<th>MO3-N</th>
<th>KJELDL N</th>
<th>T P04</th>
<th>SOL P04</th>
<th>PHOS-DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>000671</td>
<td></td>
</tr>
<tr>
<td>79/01/01</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>000671</td>
<td></td>
</tr>
<tr>
<td>79/01/01</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>000671</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NUMBER</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>MEAN</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>16</td>
<td>100000</td>
<td>010000</td>
<td>010000</td>
<td>0363750</td>
<td>010000</td>
<td>0999997</td>
<td>0363750</td>
</tr>
<tr>
<td>80/01/00</td>
<td>16</td>
<td>150000</td>
<td>010000</td>
<td>010000</td>
<td>0363750</td>
<td>010000</td>
<td>0999997</td>
<td>0363750</td>
</tr>
<tr>
<td>99/99/99</td>
<td>16</td>
<td>150000</td>
<td>010000</td>
<td>010000</td>
<td>0363750</td>
<td>010000</td>
<td>0999997</td>
<td>0363750</td>
</tr>
</tbody>
</table>

Table IV-9. Continued
<table>
<thead>
<tr>
<th>YEAR</th>
<th>STATION</th>
<th>NUMBER</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>MEAN</th>
<th>DATE FROM</th>
<th>TIME DEPTH TALK FIELD</th>
<th>DO</th>
<th>PH</th>
<th>Fecal Coli</th>
<th>Conductivity</th>
<th>PH</th>
<th>CACO3</th>
<th>Total Diss-105</th>
<th>Residue</th>
<th>Residue</th>
<th>Residue</th>
<th>Residue</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00/00/00</td>
<td>4</td>
<td>15.7000</td>
<td>1.30000</td>
<td>7.02499</td>
<td>00300</td>
<td>00300</td>
<td>7</td>
<td>9</td>
<td>350.000</td>
<td>100.000</td>
<td>7.58000</td>
<td>7.81999</td>
<td>7.58000</td>
<td>7.81999</td>
<td>578.000</td>
<td>578.000</td>
<td>578.000</td>
<td>578.000</td>
</tr>
<tr>
<td>80/01/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00400</td>
<td>00400</td>
<td></td>
</tr>
<tr>
<td>81/09/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00410</td>
<td>00410</td>
<td></td>
</tr>
<tr>
<td>82/09/99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00431</td>
<td>00431</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-10.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DEPTH</th>
<th>NH₃-N</th>
<th>NO₂-N</th>
<th>NO₃-N</th>
<th>KJELDL N</th>
<th>TPO₄</th>
<th>SOL PO₄</th>
<th>PHOS-DIS</th>
<th>P-COL</th>
<th>T P-COL</th>
<th>ORTHO</th>
<th>MG/L</th>
<th>MG/L</th>
<th>MG/L</th>
<th>MG/L</th>
<th>MG/L</th>
<th>MG/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>9</td>
</tr>
<tr>
<td>80/01/00</td>
<td>9</td>
</tr>
<tr>
<td>99/99/99</td>
<td>9</td>
</tr>
</tbody>
</table>

Table IV-10. Continued
Table IV-11.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME DEPTH</th>
<th>NH3+NH4-</th>
<th>NO2-N</th>
<th>NO3-N</th>
<th>KJELDHAL N</th>
<th>DISS</th>
<th>TPD4</th>
<th>PO4-</th>
<th>SOL-PO4-</th>
<th>PHOS-DIS</th>
<th>ORTHC</th>
<th>FEET</th>
<th>DEPTH</th>
<th>CLASS</th>
<th>CSN-RSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>79/01/01</td>
<td>00608</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>0.0300000</td>
<td>0.0100000</td>
<td>0.1000000</td>
<td>1.110000</td>
<td>0.0510000</td>
<td>0.0200000</td>
<td></td>
<td>0.0200000</td>
<td>0.0050000</td>
<td>0.0071429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0.0200000</td>
<td>0.0100000</td>
<td>0.1000000</td>
<td>0.3400000</td>
<td>0.0200000</td>
<td>0.0200000</td>
<td></td>
<td>0.0200000</td>
<td>0.0050000</td>
<td>0.0071429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>0.0214286</td>
<td>0.0100000</td>
<td>0.1000000</td>
<td>0.815714</td>
<td>0.0347143</td>
<td>0.0347143</td>
<td></td>
<td>0.0347143</td>
<td>0.0071429</td>
<td>0.0071429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80/01/00</td>
<td>00/00/00</td>
<td>STATION</td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>0.0300000</td>
<td>0.0100000</td>
<td>0.1000000</td>
<td>1.110000</td>
<td>0.0510000</td>
<td>0.0200000</td>
<td></td>
<td>0.0200000</td>
<td>0.0050000</td>
<td>0.0071429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0.0200000</td>
<td>0.0100000</td>
<td>0.1000000</td>
<td>0.3400000</td>
<td>0.0200000</td>
<td>0.0200000</td>
<td></td>
<td>0.0200000</td>
<td>0.0050000</td>
<td>0.0071429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>0.0214286</td>
<td>0.0100000</td>
<td>0.1000000</td>
<td>0.815714</td>
<td>0.0347143</td>
<td>0.0347143</td>
<td></td>
<td>0.0347143</td>
<td>0.0071429</td>
<td>0.0071429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99/99/99</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-11. Continued
<table>
<thead>
<tr>
<th>YEAR</th>
<th>STATION</th>
<th>NUMBER</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>MEAN</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>82/01/01</td>
<td>00431</td>
<td>4</td>
<td>12.9000</td>
<td>9.5000</td>
<td>11.1000</td>
<td>7.20000</td>
<td>7.0000</td>
<td>7.1000</td>
</tr>
<tr>
<td>83/01/09</td>
<td>00300</td>
<td>4</td>
<td>386.000</td>
<td>346.000</td>
<td>364.000</td>
<td>384.000</td>
<td>345.000</td>
<td>360.750</td>
</tr>
<tr>
<td>83/01/01</td>
<td>00400</td>
<td>4</td>
<td>386.000</td>
<td>346.000</td>
<td>364.000</td>
<td>384.000</td>
<td>345.000</td>
<td>360.750</td>
</tr>
<tr>
<td>84/01/00</td>
<td>00500</td>
<td>4</td>
<td>400.000</td>
<td>342.000</td>
<td>380.416</td>
<td>390.000</td>
<td>340.000</td>
<td>374.833</td>
</tr>
<tr>
<td>99/99/99</td>
<td>00515</td>
<td>16</td>
<td>400.000</td>
<td>342.000</td>
<td>376.312</td>
<td>390.000</td>
<td>340.000</td>
<td>371.312</td>
</tr>
</tbody>
</table>

Table IV-12.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DEPTH</th>
<th>NH3-NH4-</th>
<th>NO2-N</th>
<th>NO3-N</th>
<th>KJELDL N</th>
<th>T P04</th>
<th>SOL P04</th>
<th>PHOS-DIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/01</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>03/01/00</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>04/01/00</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>11</td>
<td>5</td>
<td>16</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

Table IV-12. Continued
<table>
<thead>
<tr>
<th>YEAR</th>
<th>DATE</th>
<th>TIME</th>
<th>DEPTH</th>
<th>TANK</th>
<th>ARK</th>
<th>DO</th>
<th>PH</th>
<th>FEC COLI</th>
<th>MFH-FCBR</th>
<th>Lab</th>
<th>T ALN</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
<th>RESIDUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>82/01/01</td>
<td>00431</td>
<td>00300</td>
<td>00400</td>
<td>31616</td>
<td>00095</td>
<td>00403</td>
<td>00410</td>
<td>00500</td>
<td>00515</td>
<td>00530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>83/01/00</td>
<td></td>
</tr>
<tr>
<td>83/01/01</td>
<td></td>
</tr>
<tr>
<td>84/01/00</td>
<td></td>
</tr>
</tbody>
</table>

Table IV-13.
<table>
<thead>
<tr>
<th>DATE FROM TO</th>
<th>TIME</th>
<th>DEPTH</th>
<th>N3+NH4- N</th>
<th>NO2-N</th>
<th>NO3-N</th>
<th>KJELDL N</th>
<th>T PO4</th>
<th>SOL PO4-</th>
<th>PHOS-DIS</th>
<th>ORTHO</th>
<th>P COL</th>
<th>T P COL</th>
</tr>
</thead>
<tbody>
<tr>
<td>82/01/01</td>
<td>YEAR</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td>MAXIMUM</td>
<td>.0200000</td>
<td>.0200000</td>
<td>.2000000</td>
<td>1.140000</td>
<td>.0470000</td>
<td>.0250000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM</td>
<td>.0200000</td>
<td>.0100000</td>
<td>.1000000</td>
<td>.290000</td>
<td>.0310000</td>
<td>.0100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN</td>
<td>.0200000</td>
<td>.0125000</td>
<td>.1500000</td>
<td>.675000</td>
<td>.0365000</td>
<td>.0190000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83/01/00</td>
<td>YEAR</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td>MAXIMUM</td>
<td>.540000</td>
<td>.0100000</td>
<td>.600000</td>
<td>3.64000</td>
<td>.230000</td>
<td>.1980000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM</td>
<td>.0200000</td>
<td>.0100000</td>
<td>.1000000</td>
<td>.42000</td>
<td>.0340000</td>
<td>.0050000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN</td>
<td>.0619999</td>
<td>.0100000</td>
<td>.1540000</td>
<td>.9639999</td>
<td>.0728999</td>
<td>.0248000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84/01/00</td>
<td>YEAR</td>
<td></td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>16</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>NUMBER</td>
<td>MAXIMUM</td>
<td>.540000</td>
<td>.0200000</td>
<td>.600000</td>
<td>3.64000</td>
<td>.230000</td>
<td>.0470000</td>
<td>.1980000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM</td>
<td>.0200000</td>
<td>.0100000</td>
<td>.1000000</td>
<td>.290000</td>
<td>.0340000</td>
<td>.0310000</td>
<td>.0050000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN</td>
<td>.0642856</td>
<td>.010/143</td>
<td>.150000</td>
<td>.881428</td>
<td>.0728999</td>
<td>.0365000</td>
<td>.0231428</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-13. Continued
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME DEPTH T ALK</th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00095</th>
<th>00403</th>
<th>00410</th>
<th>00500</th>
<th>00515</th>
<th>00530</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FROM OF DAY FEET</td>
<td>mg/l</td>
<td>su</td>
<td>mg/l</td>
<td>su</td>
<td>mg/l</td>
<td>su</td>
<td>mg/l</td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>02/01/01</td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>NUMBER</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>11.0000</td>
<td>7.5000</td>
<td>40.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>9.10000</td>
<td>7.10000</td>
<td>3.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>10.2667</td>
<td>7.36666</td>
<td>15.3333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/01/00</td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>NUMBER</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>13.0000</td>
<td>6.60000</td>
<td>00.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>8.40000</td>
<td>7.00000</td>
<td>3.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>10.5833</td>
<td>7.90909</td>
<td>18.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/01/00</td>
<td></td>
</tr>
<tr>
<td>00/00/00</td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>NUMBER</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>13.0000</td>
<td>6.60000</td>
<td>00.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MINIMUM</td>
<td>8.40000</td>
<td>7.00000</td>
<td>3.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>10.5200</td>
<td>7.79285</td>
<td>17.4667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-14.
<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DEPTH</th>
<th>N</th>
<th>NO2-N</th>
<th>NO3-N</th>
<th>KJELDL N</th>
<th>T PO4</th>
<th>SOL PO4</th>
<th>PHOS-DIS</th>
<th>P-COL</th>
<th>T P-COL</th>
<th>ORTHO</th>
<th>MG/L</th>
<th>MG/L</th>
<th>MG/L</th>
<th>MG/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>82/01/01</td>
<td>00613</td>
<td>00620</td>
<td>00623</td>
<td>70505</td>
<td>70506</td>
<td>00671</td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>NUMBER</td>
<td></td>
</tr>
<tr>
<td>03/01/00</td>
<td>00608</td>
<td></td>
</tr>
<tr>
<td>00/00/00</td>
<td></td>
</tr>
<tr>
<td>STATION</td>
<td>NUMBER</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0.020000</td>
<td>0.010000</td>
<td>0.010000</td>
<td>0.010000</td>
<td>0.010000</td>
<td>0.010000</td>
<td>0.010000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>0.020000</td>
<td>0.010000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td>0.020000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE IV-14. Continued</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF VIOLATIONS ON SAMPLES COLLECTED FROM 79/04/10 TO 83/04/18

<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00530</th>
<th>00515</th>
<th>00613</th>
<th>00410</th>
<th>00610</th>
<th>00608</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DO</td>
<td>PH</td>
<td>FEC COLI</td>
<td>RESIDUE</td>
<td>RESIDUE</td>
<td>NO2-N</td>
<td>T ALK</td>
<td>NH3-NH4-</td>
<td>NH3+NH4-</td>
<td>UN-IONZD</td>
</tr>
<tr>
<td></td>
<td>MG/L</td>
<td>SU</td>
<td>/100ML</td>
<td>MG/L</td>
<td>C MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>28</td>
<td>26</td>
<td>33</td>
<td>33</td>
<td>26</td>
<td>33</td>
<td>1</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MEAN</td>
<td>5.014</td>
<td>7.000</td>
<td>55.0</td>
<td>6.58</td>
<td>421.6</td>
<td>0.01</td>
<td>258.0</td>
<td>0.038</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>3.650</td>
<td>7.000</td>
<td>7.0</td>
<td>4.00</td>
<td>446.5</td>
<td>0.01</td>
<td>258.0</td>
<td>0.020</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO OF VIOLS</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>57.0</td>
<td>12.0</td>
<td>9.0</td>
<td>0.0</td>
<td>19.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.000</td>
<td>5.600</td>
<td>210.0</td>
<td>0.0</td>
<td>504.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>2.342</td>
<td>6.100</td>
<td>383.3</td>
<td>0.0</td>
<td>527.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>4.000</td>
<td>6.400</td>
<td>510.0</td>
<td>0.0</td>
<td>564.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MIN CRITERIA</td>
<td>5.000</td>
<td>6.500</td>
<td>210.0</td>
<td>0.0</td>
<td>504.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>200.0</td>
<td>90.0</td>
<td>500.0</td>
<td>50.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Table IV-15.
SUMMARY OF VIOLATIONS ON SAMPLES COLLECTED FROM 79/04/10 TO 82/09/08

<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>00515</th>
<th>00613</th>
<th>00619</th>
<th>00610</th>
<th>00608</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>31616</td>
<td>00530</td>
<td>00515</td>
<td>00613</td>
<td>0040</td>
<td>00610</td>
<td>00608</td>
<td>00619</td>
</tr>
<tr>
<td>PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFM-FCBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/100ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEC COLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOT NFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISS-105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO2-N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T ALK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH3+NH4-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH3+NH4-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN-IONZD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>29</td>
<td>32</td>
<td>40</td>
<td>40</td>
<td>32</td>
<td>40</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>MEAN</td>
<td>9.783</td>
<td>7.741</td>
<td>365.0</td>
<td>9.59</td>
<td>448.0</td>
<td>0.01</td>
<td>279.5</td>
<td>0.0383</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>9.100</td>
<td>8.000</td>
<td>215.0</td>
<td>7.00</td>
<td>470.0</td>
<td>0.01</td>
<td>278.5</td>
<td>0.0380</td>
</tr>
<tr>
<td>NO OF VIOLS</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>0.0</td>
<td>16.0</td>
<td>28.0</td>
<td>0.0</td>
<td>22.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.0</td>
<td>5.800</td>
<td>290.0</td>
<td>0.0</td>
<td>501.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>0.0</td>
<td>7.540</td>
<td>1241.0</td>
<td>0.0</td>
<td>519.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>0.0</td>
<td>8.600</td>
<td>4130.0</td>
<td>0.0</td>
<td>537.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MIN CRITERIA</td>
<td>5.00</td>
<td>6.500</td>
<td>1500.0</td>
<td>0.0</td>
<td>500.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>0.0</td>
<td>20.0</td>
<td>90.0</td>
<td>500.0</td>
<td>50.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table IV-16.
<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00530</th>
<th>00515</th>
<th>00613</th>
<th>00410</th>
<th>00610</th>
<th>00608</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DO</td>
<td>PH</td>
<td>FEC COLI</td>
<td>RESIDUE</td>
<td>RESIDUE</td>
<td>NO2-N</td>
<td>T ALK</td>
<td>NH3+NH4-</td>
<td>NH3+NH4-</td>
<td>UN-IONIZD</td>
</tr>
<tr>
<td></td>
<td>MG/L</td>
<td>SU</td>
<td>/100ML</td>
<td>MG/L</td>
<td>C MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>20</td>
<td>31</td>
<td>38</td>
<td>38</td>
<td>35</td>
<td>36</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MEAN</td>
<td>7.380</td>
<td>7.626</td>
<td>92.8</td>
<td>7.34</td>
<td>364.1</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0344</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>6.000</td>
<td>7.700</td>
<td>23.5</td>
<td>5.50</td>
<td>338.0</td>
<td>0.01</td>
<td>*</td>
<td>0.0200</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NO OF VIOLS</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>35.</td>
<td>0.</td>
<td>13.</td>
<td>0.</td>
<td>11.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>1.900</td>
<td>0.0</td>
<td>220.0</td>
<td>0.0</td>
<td>503.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>3.214</td>
<td>0.0</td>
<td>476.0</td>
<td>0.0</td>
<td>587.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>4.200</td>
<td>0.0</td>
<td>790.0</td>
<td>0.0</td>
<td>834.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MIN CRITERIA</td>
<td>5.00</td>
<td>6.500</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>200.0</td>
<td>90.0</td>
<td>500.0</td>
<td>50.0</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00300</td>
<td>00400</td>
<td>01616</td>
<td>00530</td>
<td>00515</td>
<td>00613</td>
<td>00410</td>
<td>00610</td>
<td>00608</td>
<td>00619</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>DO</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOT NEFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIS-105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>7.725</td>
<td>7.456</td>
<td>409.7</td>
<td>27.05</td>
<td>394.8</td>
<td>0.01</td>
<td>281.0</td>
<td>0.0259</td>
<td>0.302</td>
<td>0.0</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>7.900</td>
<td>7.450</td>
<td>215.0</td>
<td>7.50</td>
<td>423.0</td>
<td>0.01</td>
<td>284.0</td>
<td>0.0200</td>
<td>0.302</td>
<td>0.0</td>
</tr>
<tr>
<td>NO OF VIOLS</td>
<td></td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td></td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>5</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.0</td>
<td>0.0</td>
<td>250.0</td>
<td>425.00</td>
<td>519.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>0.0</td>
<td>0.0</td>
<td>890.0</td>
<td>425.00</td>
<td>519.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>0.0</td>
<td>0.0</td>
<td>2400.0</td>
<td>425.00</td>
<td>519.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MIN CRITERIA</td>
<td>5.000</td>
<td>6.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>50.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IV-18.
Table IV-19.

<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>00515</th>
<th>00610</th>
<th>00613</th>
<th>00610</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>9.035</td>
<td>7.904</td>
<td>9.04</td>
<td>11.04</td>
<td>363.9</td>
<td>0.01</td>
<td>166.00</td>
</tr>
<tr>
<td>FEC COLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFM-FCBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOT NLLT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISS 105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>23</td>
<td>19</td>
<td>26</td>
<td>26</td>
<td>23</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIAN</td>
<td>8.500</td>
<td>8.300</td>
<td>6.500</td>
<td>6.500</td>
<td>364.0</td>
<td>0.01</td>
<td>166.00</td>
</tr>
<tr>
<td>NO OF VIOLS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.0</td>
<td>8.400</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>0.0</td>
<td>0.522</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>0.0</td>
<td>8.300</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>200.0</td>
<td>90.00</td>
<td>500.0</td>
<td>50.00</td>
<td>50.00</td>
<td>0.0400</td>
</tr>
<tr>
<td>Parameter</td>
<td>00400</td>
<td>00400</td>
<td>00530</td>
<td>00515</td>
<td>00613</td>
<td>00410</td>
<td>00690</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>DO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PH</td>
<td>8.05</td>
<td>8.05</td>
<td>3666.1</td>
<td>3666.1</td>
<td>3666.1</td>
<td>3666.1</td>
<td>3666.1</td>
</tr>
<tr>
<td>FEC COLI</td>
<td>0.44</td>
<td>0.44</td>
<td>378.4</td>
<td>378.4</td>
<td>378.4</td>
<td>378.4</td>
<td>378.4</td>
</tr>
<tr>
<td>RESIDUE HFM-FCBR</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
<td>MG/L</td>
</tr>
<tr>
<td>TOT NFTL</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>DISS-105</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>DISS</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CACO3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NH3+NH4-</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NH3+NH4+</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>UN-IONZD</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>MEAN</td>
<td>8.956</td>
<td>8.053</td>
<td>3666.1</td>
<td>9.44</td>
<td>378.4</td>
<td>0.01</td>
<td>0.0327</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>8.600</td>
<td>8.300</td>
<td>6.50</td>
<td>6.50</td>
<td>6.50</td>
<td>6.50</td>
<td>6.50</td>
</tr>
<tr>
<td>NO OF VIOL</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>0.0</td>
<td>4.7</td>
<td>19.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>200.0</td>
<td>90.00</td>
<td>500.0</td>
<td>500.0</td>
<td>500.0</td>
<td>500.0</td>
</tr>
</tbody>
</table>

Table IV-20.
<table>
<thead>
<tr>
<th>NO OF VALUES</th>
<th>MEAN</th>
<th>MEDIAN</th>
<th>NO OF VIOLS</th>
<th>PERCENT VIOL</th>
<th>MINIMUM VIOL</th>
<th>MEAN VIOL</th>
<th>MAXIMUM VIOL</th>
<th>MIN CRITERIA</th>
<th>MAX CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>8.807</td>
<td>7.900</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.000</td>
<td>0.0400</td>
</tr>
<tr>
<td>15</td>
<td>8.027</td>
<td>8.400</td>
<td>8</td>
<td>53.0</td>
<td>8.400</td>
<td>8.500</td>
<td>8.700</td>
<td>6.500</td>
<td>8.300</td>
</tr>
<tr>
<td>16</td>
<td>133.7</td>
<td>3.0</td>
<td>1</td>
<td>0</td>
<td>2000.0</td>
<td>2000.0</td>
<td>2000.0</td>
<td>2000.0</td>
<td>2000.0</td>
</tr>
<tr>
<td>16</td>
<td>7.28</td>
<td>6.50</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>90.00</td>
<td>500.0</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>50.00</td>
<td>0.0400</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table IV-21.
Table IV-22.
<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Sample Description</th>
<th>Values</th>
<th>Violations</th>
<th>% Violations</th>
<th>Criteria</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>00300</td>
<td>DO</td>
<td>00400</td>
<td>31616</td>
<td>00530</td>
<td>00515</td>
<td>00613</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MG/L</td>
<td>RESIDUE</td>
<td>RESIDUE</td>
<td>NO2-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MG/L</td>
<td>/100HL</td>
<td>MG/L</td>
<td>C MG/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO OF VALUES</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN</td>
<td>7.025</td>
<td>7.343</td>
<td>118.3</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEDIAN</td>
<td>6.150</td>
<td>7.500</td>
<td>63.0</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO OF VIOLs</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERCENT VIOL</td>
<td>50.0</td>
<td>14.0</td>
<td>22.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM VIOL</td>
<td>1.300</td>
<td>5.600</td>
<td>310.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEAN VIOL</td>
<td>1.650</td>
<td>5.600</td>
<td>330.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAXIMUM VIOL</td>
<td>2.900</td>
<td>5.600</td>
<td>350.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN CRITERIA</td>
<td>5.000</td>
<td>6.500</td>
<td>6.500</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>200.0</td>
<td>90.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table IV-23.
Table IV-24.

<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00530</th>
<th>00515</th>
<th>00613</th>
<th>00410</th>
<th>00610</th>
<th>00608</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NH</td>
<td>9.650</td>
<td>8.071</td>
<td>49.4</td>
<td>3.64</td>
<td>510.1</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0214</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FEC COLI</td>
<td>10.700</td>
<td>0.100</td>
<td>10.0</td>
<td>4.00</td>
<td>515.0</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0200</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO2-N</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>57</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO3-N</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>57</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NH3-NH2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>57</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>UN-IONZD</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>57</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Summary of Violations on Samples Collected from 79/05/15 to 79/06/05

| | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.0400 |

| NO CRITERIA | 5.000 | 6.500 | ******** | ******** | ******** | ******** | ******** | ******** | ******** | ******** |

| MAX CRITERIA | 8.300 | 200.0 | 90.00 | 500.0 | 50.00 | ******** | ******** | ******** | ******** | ******** |
Summary of Violations on Samples Collected from 82/10/06 to 83/10/16

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00530</th>
<th>00515</th>
<th>00613</th>
<th>00410</th>
<th>00610</th>
<th>00608</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>MG/L</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PH</td>
<td>SU/100mL</td>
<td>10.300</td>
<td>7.827</td>
<td>18.0</td>
<td>16.0</td>
<td>5.00</td>
<td>371.3</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0256</td>
<td>0.0</td>
</tr>
<tr>
<td>Residue (MFM-FCB)</td>
<td>MG/L</td>
<td>10.000</td>
<td>8.100</td>
<td>10.0</td>
<td>3.00</td>
<td>377.0</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0200</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Residue (N)</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO2-N</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH3-NH4</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N Total</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISS</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CACO3</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N DISS</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N H3-NH3</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN-IONIZD</td>
<td>MG/L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean

- DO: 10.300
- pH: 7.827
- Residue (MFM-FCB): 16.0
- Residue (N): 16.0
- NO2-N: 0.01
- Alkalinity: 0.0
- NH3-NH4: 0.01
- N Total: 0.0
- DISS: 0.0
- CACO3: 0.0
- N DISS: 0.0
- N H3-NH3: 0.0
- UN-IONIZD: 0.0

Median

- DO: 10.000
- pH: 8.100
- Residue (MFM-FCB): 3.00
- Residue (N): 3.00
- NO2-N: 0.01
- Alkalinity: 0.0
- NH3-NH4: 0.01
- N Total: 0.0
- DISS: 0.0
- CACO3: 0.0
- N DISS: 0.0
- N H3-NH3: 0.0
- UN-IONIZD: 0.0

Percent Violations

- Percent Viol: 0.0

Minimum Violations

- Minimum Viol: 8.400
- Minimum Viol: 8.433
- Minimum Viol: 8.500
- Minimum Viol: 6.500

Maximum Violations

- Maximum Viol: 8.500
- Maximum Viol: 6.500
- Maximum Viol: 6.500
- Maximum Viol: 8.300

Minimum Criteria

- Minimum Criteria: 6.500
- Minimum Criteria: 6.500
- Minimum Criteria: 6.500
- Minimum Criteria: 6.500

Maximum Criteria

- Maximum Criteria: 8.300
- Maximum Criteria: 8.300
- Maximum Criteria: 8.300
- Maximum Criteria: 8.300

Table IV-25.
<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00530</th>
<th>00515</th>
<th>00613</th>
<th>00410</th>
<th>00610</th>
<th>00608</th>
<th>00619</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MG/L</td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>14</td>
</tr>
<tr>
<td>MEAN</td>
<td>10.521</td>
<td>7.771</td>
<td>12.8</td>
<td>5.79</td>
<td>347.7</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0643</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>10.050</td>
<td>8.200</td>
<td>10.0</td>
<td>5.00</td>
<td>360.5</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0250</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NO OF VIOLS</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>0.0</td>
<td>14.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.0</td>
<td>6.400</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>0.0</td>
<td>7.450</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>0.0</td>
<td>8.500</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MIN CRITERIA</td>
<td>5.00</td>
<td>6.500</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>8.300</td>
<td>200.0</td>
<td>90.00</td>
<td>500.0</td>
<td>50.00</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>***********</td>
<td>0.0400</td>
</tr>
</tbody>
</table>

Table IV-26.
<table>
<thead>
<tr>
<th></th>
<th>00300</th>
<th>00400</th>
<th>31616</th>
<th>00530</th>
<th>00515</th>
<th>00613</th>
<th>00610</th>
<th>00608</th>
<th>00610</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DO</td>
<td>PH</td>
<td>FEC COLI</td>
<td>RESIDUE</td>
<td>RESIDUE</td>
<td>NO2-N</td>
<td>T ALK</td>
<td>NH3+NH4-</td>
<td>NH3+NH4-</td>
</tr>
<tr>
<td>NO OF VALUES</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>MEAN</td>
<td>10.520</td>
<td>7.793</td>
<td>17.5</td>
<td>7.20</td>
<td>384.2</td>
<td>0.01</td>
<td>0.0</td>
<td>0.0293</td>
<td>0.0</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>10.700</td>
<td>7.850</td>
<td>10.0</td>
<td>6.00</td>
<td>364.0</td>
<td>0.01 **</td>
<td>0.0200</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>NO OF VIOLs</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERCENT VIOL</td>
<td>0.0</td>
<td>21.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MINIMUM VIOL</td>
<td>0.0</td>
<td>8.400</td>
<td>0.0</td>
<td>0.0</td>
<td>660.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MEAN VIOL</td>
<td>0.0</td>
<td>8.500</td>
<td>0.0</td>
<td>0.0</td>
<td>660.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAXIMUM VIOL</td>
<td>0.0</td>
<td>8.600</td>
<td>0.0</td>
<td>0.0</td>
<td>660.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MIN CRITERIA</td>
<td>5.000</td>
<td>6.500</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>MAX CRITERIA</td>
<td>**</td>
<td>**</td>
<td>8.300</td>
<td>200.0</td>
<td>90.00</td>
<td>500.0</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Table IV-27.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>N</th>
<th>MEAN</th>
<th>STANDARD DEVIATION</th>
<th>MINIMUM VALUE</th>
<th>MAXIMUM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGN</td>
<td>16</td>
<td>0.848</td>
<td>0.545</td>
<td>0.000</td>
<td>2.030</td>
</tr>
<tr>
<td>INON</td>
<td>16</td>
<td>0.143</td>
<td>0.029</td>
<td>0.000</td>
<td>0.230</td>
</tr>
<tr>
<td>ORGN</td>
<td>16</td>
<td>0.596</td>
<td>0.282</td>
<td>0.170</td>
<td>1.070</td>
</tr>
<tr>
<td>INON</td>
<td>16</td>
<td>0.154</td>
<td>0.070</td>
<td>0.016</td>
<td>0.410</td>
</tr>
<tr>
<td>ORGN</td>
<td>16</td>
<td>0.675</td>
<td>0.316</td>
<td>0.000</td>
<td>1.410</td>
</tr>
<tr>
<td>INON</td>
<td>15</td>
<td>0.147</td>
<td>0.045</td>
<td>0.012</td>
<td>0.290</td>
</tr>
<tr>
<td>ORGN</td>
<td>16</td>
<td>0.832</td>
<td>0.335</td>
<td>0.280</td>
<td>1.630</td>
</tr>
<tr>
<td>INON</td>
<td>16</td>
<td>0.142</td>
<td>0.028</td>
<td>0.130</td>
<td>0.240</td>
</tr>
<tr>
<td>ORGN</td>
<td>15</td>
<td>0.649</td>
<td>0.399</td>
<td>-0.009</td>
<td>1.820</td>
</tr>
<tr>
<td>INON</td>
<td>15</td>
<td>0.147</td>
<td>0.029</td>
<td>0.130</td>
<td>0.240</td>
</tr>
<tr>
<td>ORGN</td>
<td>14</td>
<td>0.817</td>
<td>0.693</td>
<td>0.270</td>
<td>3.100</td>
</tr>
<tr>
<td>INON</td>
<td>14</td>
<td>0.225</td>
<td>0.269</td>
<td>0.130</td>
<td>1.150</td>
</tr>
</tbody>
</table>

Table IV-28.
<table>
<thead>
<tr>
<th>Site</th>
<th>LB</th>
<th>X</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>46PI07</td>
<td></td>
<td><27.30</td>
<td><37.15</td>
</tr>
<tr>
<td>1979</td>
<td>17.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46PI17A</td>
<td></td>
<td><55.34</td>
<td><78.04</td>
</tr>
<tr>
<td>1981</td>
<td>32.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>15.40</td>
<td><20.95</td>
<td><26.50</td>
</tr>
<tr>
<td>1983</td>
<td>12.35</td>
<td><16.62</td>
<td><20.89</td>
</tr>
<tr>
<td>46PI08</td>
<td></td>
<td><28.72</td>
<td><44.57</td>
</tr>
<tr>
<td>1979</td>
<td>12.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46PI8A</td>
<td></td>
<td><62.34</td>
<td><89.29</td>
</tr>
<tr>
<td>1981</td>
<td>35.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>12.62</td>
<td><19.67</td>
<td><25.72</td>
</tr>
<tr>
<td>1983</td>
<td>10.19</td>
<td><12.70</td>
<td><15.21</td>
</tr>
<tr>
<td>46PI09</td>
<td></td>
<td><31.34</td>
<td><46.95</td>
</tr>
<tr>
<td>1979</td>
<td>15.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46PI9A</td>
<td></td>
<td><76.94</td>
<td><125.14</td>
</tr>
<tr>
<td>1981</td>
<td>28.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>12.80</td>
<td><27.94</td>
<td><43.08</td>
</tr>
<tr>
<td>1983</td>
<td>9.64</td>
<td><14.54</td>
<td><19.44</td>
</tr>
</tbody>
</table>

Table IV-29. 95% confidence intervals of in-lake ratios of total nitrogen to total phosphorus. LB=lower bound, x=mean, UB=upper bound.
<table>
<thead>
<tr>
<th>Site</th>
<th>LB</th>
<th>X</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>46PI07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>51.04</td>
<td><54.45</td>
<td><57.87</td>
</tr>
<tr>
<td>46PI7A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>43.67</td>
<td><46.88</td>
<td><50.09</td>
</tr>
<tr>
<td>1982</td>
<td>53.77</td>
<td><56.22</td>
<td><58.67</td>
</tr>
<tr>
<td>1983</td>
<td>59.37</td>
<td><61.92</td>
<td><64.47</td>
</tr>
<tr>
<td>46PI08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>47.90</td>
<td><53.09</td>
<td><58.28</td>
</tr>
<tr>
<td>46PI8A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>47.51</td>
<td><51.18</td>
<td><54.85</td>
</tr>
<tr>
<td>1982</td>
<td>55.34</td>
<td><57.96</td>
<td><60.58</td>
</tr>
<tr>
<td>1983</td>
<td>59.98</td>
<td><64.64</td>
<td><69.30</td>
</tr>
<tr>
<td>46PI09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>48.02</td>
<td><52.51</td>
<td><57.20</td>
</tr>
<tr>
<td>46PI9A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>41.78</td>
<td><44.72</td>
<td><47.66</td>
</tr>
<tr>
<td>1982</td>
<td>52.18</td>
<td><56.25</td>
<td><60.32</td>
</tr>
<tr>
<td>1983</td>
<td>57.09</td>
<td><61.49</td>
<td><65.89</td>
</tr>
</tbody>
</table>

Table IV-30. 45% confidence for mean total phosphorus trophic state indices (Carlson, 1977) in Pickerel Lake. LB=lower ground, x=mean, UB=upper bound.
Table IV-31

Total phosphorus and total nitrogen loads and areal loads to Pickerel Lake.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Phosphorus (g/yr)</th>
<th>Total Nitrogen (g/yr)</th>
<th>Total Phosphorus (g/yr)</th>
<th>Total Nitrogen (g/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>730653.52</td>
<td>10,093,842.43</td>
<td>7416.95</td>
<td>45,769.7</td>
</tr>
<tr>
<td>1982</td>
<td>295283.0</td>
<td>11052127.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Load (g/yr)</th>
<th>Areal Load (g/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phosphorus</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>1979</td>
<td>730653.52</td>
<td>0.19</td>
</tr>
<tr>
<td>1982</td>
<td>295283.0</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Areal Load (g/m²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phosphorus</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>1979</td>
<td>10239612.13</td>
<td>2.65</td>
</tr>
<tr>
<td>1982</td>
<td>11052127.3</td>
<td>2.86</td>
</tr>
</tbody>
</table>
STORET
16P127
1 3 1 0 0 6 7 1 7 0 3 0 2
PICKEREL/INLAKE NE SHORE T124N R53W SEC 15
46037 SOUTH DAKOTA DAY
MISSOURI RIVER 090700
BIG SIOUX RIVER
215BLAKE 810500
6000 FEET DEPTH CLASS 00 CSH-RSP 0596276 - 0624706

Figure IV-1.
Figure IV-2.
Figure IV-4.
Figure IV-8.
Figure IV-10.
Figure IV-12.
Figure IV-25.
Figure IV-26.
Figure IV-27.