BELLE FOURCHE RIVER WATERSHED MANAGEMENT AND PROJECT IMPLEMENTATION PLAN SEGMENT 8 WATERSHED PROJECT FINAL REPORT SECTION 319 NONPOINT SOURCE POLLUTION CONTROL PROGRAM

PREPARED FOR
Belle Fourche River Watershed Partnership
1837 5th Avenue South
Belle Fourche, South Dakota 57717

OCTOBER 2019
BELLE FOURCHE RIVER WATERSHED MANAGEMENT AND PROJECT IMPLEMENTATION PLAN SEGMENT 8 WATERSHED PROJECT FINAL REPORT SECTION 319 NONPOINT SOURCE POLLUTION CONTROL PROGRAM

PREPARED BY
Matt Stoltenberg
Justin Krajewski
RESPEC
3824 Jet Drive
Rapid City, South Dakota 57703

PREPARED FOR
Belle Fourche River Watershed Partnership
1837 5th Avenue South
Belle Fourche, South Dakota 57717

OCTOBER 2019

Project Number 3124
EXECUTIVE SUMMARY

<table>
<thead>
<tr>
<th>Project Title:</th>
<th>Belle Fourche River Watershed Management and Project Implementation Plan Segment 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Number(s):</td>
<td>C9-99818517, C9-99818518</td>
</tr>
<tr>
<td>Project Start Date:</td>
<td>July 24, 2017</td>
</tr>
<tr>
<td>Project Completion Date:</td>
<td>July 25, 2019</td>
</tr>
<tr>
<td>Funding:</td>
<td></td>
</tr>
<tr>
<td>Total EPA 319 Grant Budget:</td>
<td>$900,000</td>
</tr>
<tr>
<td>Total Matching Funds Budget:</td>
<td>$718,500</td>
</tr>
<tr>
<td>Total Nonmatching Funds Budget:</td>
<td>$918,400</td>
</tr>
<tr>
<td>Total Budget:</td>
<td>$2,536,900</td>
</tr>
<tr>
<td>Budget Revisions:</td>
<td></td>
</tr>
<tr>
<td>July 2017 319 Award</td>
<td>$650,000</td>
</tr>
<tr>
<td>June 2018 319 Award</td>
<td>$250,000</td>
</tr>
<tr>
<td>Total Expenditures of EPA Funds:</td>
<td>$839,255</td>
</tr>
<tr>
<td>Total 319 Matching Funds Accrued:</td>
<td>$1,001,086</td>
</tr>
<tr>
<td>Total Nonmatching Funds Accrued:</td>
<td>$256,480</td>
</tr>
<tr>
<td>Total Expenditures:</td>
<td>$2,096,821</td>
</tr>
</tbody>
</table>

The Belle Fourche River Watershed Management and Project Implementation Plan Segment 8 was sponsored by the Belle Fourche River Watershed Partnership (BFRWP) with support from agricultural organizations, federal and state agencies, and local governments. This project continued implementing the best management practices (BMPs) that were identified in the Total Maximum Daily Load (TMDL) report for the Belle Fourche River. This project segment had the following objectives:

- Continue implementing BMPs in the watershed to reduce total suspended solids (TSS) to 19 milligrams per liter (mg/L) below the Belle Fourche Reservoir and 11 mg/L above the Belle Fourche Reservoir
- Continue implementing BMPs to reduce E. coli in the Belle Fourche River
- Continue providing public education and outreach to stakeholders within the Belle Fourche River Watershed
- Continue tracking the progress made toward reaching the goals of the TMDL to ensure that BMPs are effective and that the proper BMPs are implemented

Several activities were completed to improve irrigation efficiencies after water was delivered to irrigated fields in the Belle Fourche River Watershed. A total of 11 center-pivot sprinkler systems on 888 acres were installed to replace existing surface-irrigated fields. Eight farmers participated in an irrigation scheduling project to optimize irrigation application on an estimated 1,800 acres.
Grazing/riparian areas were improved in the watershed, and 17 producers participated in 20 range/riparian improvement projects during this segment. These projects include 13 water development projects, 3 water development and riparian fencing projects, 3 cross-fencing projects, and 1 creek crossing project that impacted over 2,000 riparian acres in the watershed. In addition to 319 projects, the Natural Resources Conservation Service (NRCS) funded Environmental Quality Incentives Program (EQIP) and Conservation Stewardship Program (CSP) projects in the watershed.

Approximately 23 public education and outreach events were completed during this project segment, including public meetings, informational booths, website maintenance, radio sound bites, rainfall simulator demonstrations, and watershed tours. Outreach and education efforts reached at least 9,500 people. A soil-quality demonstration trailer was purchased by the BFRWP in 2009 to demonstrate the effects of erosion on soils and how they relate to TSS. The trailer was used at several events that were sponsored by the BFRWP. The BFRWP hosted six meetings to provide updates on project work and progress being made. The BFRWP website continues to be updated with events and project status (www.bellefourchewatershed.org). Outreach activities have helped to increase participation and support for the BFRWP and also gave the BFRWP several contacts for BMP installation. Several informative sound bites were broadcasted on local radio to increase public awareness of water quality issues and to promote project involvement.

Preliminary estimates based on BMP installation indicate that TSS was reduced by 5,558 tons per year, in this segment. The amount brings the cumulative TSS load reduction to 179,035 tons per year. In addition to TSS, the installed BMPs are estimated to reduced nitrogen by 4,559 pounds per year, and phosphorus by 2,617 pounds per year.
ACKNOWLEDGEMENTS

The BFRWP would like to thank those who were involved with this segment of implementing practices recommended by from the Belle Fourche River Watershed TMDL. The efforts of all those involved from the following organizations are greatly appreciated and have been essential to the success of this project:

- Belle Fourche Irrigation District
- Bureau of Land Management
- Butte Conservation District
- Elk Creek Conservation District
- Lawrence County Conservation District
- Individual ranchers, farmers, and landowners within the watershed
- Lawrence County
- Natural Resources Conservation Service
- South Dakota Association of Conservation Districts
- South Dakota Conservation Commission
- South Dakota Department of Agriculture
- South Dakota Department of Environment and Natural Resources
- South Dakota Game Fish and Parks
- South Dakota Grassland Coalition
- South Dakota School of Mines & Technology
- South Dakota State University
- US Army Corp of Engineers
- US Bureau of Reclamation
- US Environmental Protection Agency
- US Fish and Wildlife Service
- US Geological Survey
- Wyoming Department of Environmental Quality.
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

2.0 PROJECT GOALS AND OBJECTIVES .. 5
 2.1 PLANNED AND ACTUAL MILESTONES, PRODUCTS, AND COMPLETION DATES 5
 2.2 EVALUATION OF GOAL ATTAINMENT .. 6

3.0 BEST MANAGEMENT PRACTICES ... 7
 3.1 REDUCING NONUSED IRRIGATION WATER AND IMPROVING EFFICIENCY 10
 3.1.1 On-Farm Irrigation Improvements .. 10
 3.1.2 Irrigation Scheduling ... 10
 3.2 RANGE RIPARIAN IMPROVEMENTS .. 12
 3.3 IMPROVED CROPPING PRACTICES ... 12

4.0 SUMMARY OF PUBLIC PARTICIPATION AND OUTREACH .. 14

5.0 MONITORING RESULTS ... 16
 5.1 IMPAIRED WATERBODIES AND APPROVED TOTAL MAXIMUM DAILY LOADS 16
 5.2 BELLE FOURCHE RIVER WATERSHED RAPID GEOMORPHIC ASSESSMENT 16
 5.3 WATER QUALITY Sampling ... 18
 5.3.1 Belle Fourche River Water Quality Data ... 19
 5.3.2 Horse Creek and Indian Creek Water Quality Data .. 19

6.0 RESULTS AND CONCLUSIONS ... 41

7.0 PROJECT BUDGET/EXPENDITURES ... 42
 7.1 319 BUDGET .. 42
 7.2 MATCHING FUNDS BUDGET .. 42
 7.3 NONMATCHING FEDERAL FUNDS BUDGET .. 42

8.0 FUTURE ACTIVITY RECOMMENDATIONS .. 42

9.0 REFERENCES ... 42
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1-1. Summary for Impaired Streams within the Watershed included in the South Dakota 2018 Integrated Report</td>
<td>3</td>
</tr>
<tr>
<td>Table 2-1. Planned Versus Actual Milestones and Completion Dates</td>
<td>6</td>
</tr>
<tr>
<td>Table 2-2. Pollutant Reduction Achieved by Each Best Management Practice Implemented</td>
<td>7</td>
</tr>
<tr>
<td>Table 3-1. Best Management Practices Implemented</td>
<td>7</td>
</tr>
<tr>
<td>Table 3-2. Best Management Practices Implemented with 319 Funding and Local Match</td>
<td>10</td>
</tr>
<tr>
<td>Table 4-1. Summary of Public Outreach and Education During Segment 8</td>
<td>14</td>
</tr>
<tr>
<td>Table 5-1. E. coli and TSS Sample Results for WQM130, WQM83, WQM81, WQM80, and WQM76 during Segment 8</td>
<td>21</td>
</tr>
<tr>
<td>Table 5-2. E. coli and TSS Sample Results for HCR02, HCR04, and ICR03 during Segment 8</td>
<td>22</td>
</tr>
<tr>
<td>Table 7-1a. Planned Budget of 319 Funds</td>
<td>43</td>
</tr>
<tr>
<td>Table 7-2a. Planned EPA 319 and Matching Funds Budget</td>
<td>45</td>
</tr>
<tr>
<td>Table 7-3a. Planned Nonmatching Funds Budget</td>
<td>47</td>
</tr>
<tr>
<td>Table 7-4a. Planned Total Budget</td>
<td>49</td>
</tr>
<tr>
<td>Table 7-4b. Actual Total Budget</td>
<td>50</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1. Location of the Belle Fourche River Watershed within South Dakota</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1-2. Impaired Stream Reaches on the Belle Fourche River and Horse Creek in South Dakota</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3-1. General Location of Completed Best Management Practices by Project Segment within the Watershed</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3-2. General Location of Completed Irrigation and Riparian/Range Best Management Practices in the Watershed</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3-3. Flood-Irrigated Field Demonstrating Inefficient Water Use That Leads to Sediment Runoff</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3-4. Center-Pivot Irrigation System Installed in the Belle Fourche River Watershed</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3-5. Cross Fence Installed to Improved Grazing Management within the Belle Fourche River Watershed</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3-6. Livestock Watering Facility Installed in the Uplands to Replace Watering on the Belle Fourche River</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3-7. Buried Pipeline Installed to Supply Livestock Watering Facilities within the Belle Fourche River Watershed</td>
<td>13</td>
</tr>
<tr>
<td>Figure 4-1. Elk Creek Conservation District Range and Soil Health Tour in the Belle Fourche River Watershed</td>
<td>15</td>
</tr>
<tr>
<td>Figure 4-2. Belle Fourche River Watershed Partnership Soil Health and Rainfall Simulator Demonstration</td>
<td>15</td>
</tr>
<tr>
<td>Figure 5-1. Bank Cover, Boulder/Cobble Substrate, and Bank Protection on the River Above the Fruitdale Road Bridge</td>
<td>16</td>
</tr>
<tr>
<td>Figure 5-2. Eroded Banks, Silt Substrate, and Channel Widening on the River Above the US Highway 212 Bridge</td>
<td>17</td>
</tr>
<tr>
<td>Figure 5-3. Eroded Banks, Silt Substrate, and Downcut Channel on Horse Creek Above the Eichler Road Bridge</td>
<td>17</td>
</tr>
<tr>
<td>Figure 5-4. Eroded Banks, Channel Deposition and Widening on the Belle Fourche River Below the Elm Springs Road Bridge</td>
<td>18</td>
</tr>
</tbody>
</table>
Figure 5-5. Water Quality Monitoring Sites located on the Belle Fourche River, Horse Creek, and Indian Creek Sampled During the BFRWP’s Segment 8 Project. ... 20

Figure 5-6. *E. coli* Water Quality Sampling Results at Site WQM130 (460130) on the Belle Fourche River from May–September during 2017, 2018, and 2019. ... 23

Figure 5-7. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM130 (460130) on the Belle Fourche River from May–September during 2017, 2018, and 2019. .. 24

Figure 5-8. *E. coli* Sampling Results at Monitoring Site WQM83 (460683) on the Belle Fourche River from May–September during 2017, 2018, and 2019. ... 25

Figure 5-9. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM83 (460683) on the Belle Fourche River from May–September during 2017, 2018, and 2019. 26

Figure 5-10. *E. coli* Sampling Results at Monitoring Site WQM81 (460681) on the Belle Fourche River from May–September during 2017, 2018, and 2019. ... 27

Figure 5-11. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM81 (460681) on the Belle Fourche River from May–September during 2017, 2018, and 2019. 28

Figure 5-12. *E. coli* Sampling Results at Monitoring Site BF6 on the Belle Fourche River from May–September during 2017, 2018, and 2019. ... 29

Figure 5-13. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site BF6 on the Belle Fourche River from May–September during 2017, 2018, and 2019. .. 30

Figure 5-14. *E. coli* Sampling Results at Monitoring Site WQM21 (460880) on the Belle Fourche River from May–September during 2017, 2018, and 2019. ... 31

Figure 5-15. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM21 (460880) on the Belle Fourche River from May–September during 2017, 2018, and 2019. 32

Figure 5-16. *E. coli* Sampling Results at Monitoring Site WQM76 (460676) on the Belle Fourche River from May–September during 2017, 2018, and 2019. ... 33

Figure 5-17. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM76 (460676) on the Belle Fourche River from May–September during 2017, 2018, and 2019. 34

Figure 5-18. *E. coli* Sampling Results at Monitoring Site ICR03 on Indian Creek from May–September during 2017, 2018, and 2019. ... 35

Figure 5-19. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site ICR03 on Indian Creek from May–September during 2017, 2018, and 2019. ... 36

Figure 5-20. *E. coli* Sampling Results at Monitoring Site HCR04 on Horse Creek from May–September during 2017, 2018, and 2019. ... 37

Figure 5-21. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site HCR04 on Horse Creek from May–September during 2017, 2018, and 2019. ... 38

Figure 5-22. *E. coli* Sampling Results at Monitoring Site HCR02 on Horse Creek from May–September during 2017, 2018, and 2019. ... 39

Figure 5-23. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site HCR02 on Horse Creek from May–September during 2017, 2018, and 2019. ... 40
1.0 INTRODUCTION

The Belle Fourche River in South Dakota flows east from west of Belle Fourche at the Wyoming-South Dakota state line and drains portions of Butte, Lawrence, and Meade Counties in South Dakota. The river begins southwest of Wright, Wyoming and flows northeast into Keyhole Reservoir, and continues to flow northeast to west of Colony, Wyoming where the river turns and flows southeast into South Dakota. The Belle Fourche River flows southeast to near Hereford and then flows east into the Cheyenne River in southern Meade County. For the purposes of this report, the Belle Fourche River Watershed only includes the drainage areas that are located within the state of South Dakota.

The Belle Fourche River Watershed encompasses approximately 2,089,200 acres (3,264 square miles) in South Dakota as shown in Figure 1-1. The watershed encompasses portions of two 8-digit Hydrologic Units (HUC): Lower Belle Fourche (10120202) and Redwater (10120203). Communities in the watershed include Belle Fourche, Deadwood, Fruitdale, Lead, Newell, Nisland, Spearfish, Sturgis, and Vale. The city of Spearfish with a population of 10,718 is the largest municipality in the watershed.

Land is used primarily for livestock grazing and crop production with logging, mining, recreation, and tourism uses occurring within the watershed. Grasslands cover more than 68 percent (1,442,400 acres) of the watershed with forestland occurring on 15.1 percent (316,500 acres). Hay/pasture lands cover 9.9 percent (208,600 acres) while cropland covers more than 3.3 percent (69,800 acres) in the watershed. Also, there is more than 78,000 acres of irrigated lands throughout the entire watershed including approximately 57,000 acres of irrigated cropland within the Belle Fourche Irrigation District (BFID). Commercial, industrial, and residential areas including roads cover more than 41,000 acres (2.0 percent) in the watershed. Approximately 83 percent of the watershed is private with 14 percent managed by federal agencies, and 2.5 percent owned by South Dakota.

The Belle Fourche River from the Wyoming-South Dakota state line to the Cheyenne River is identified as impaired in South Dakota’s 2018 Integrated Report (2018 IR) because of elevated total suspended solids (TSS) and Escherichia coli (E. coli) concentrations. In the 2018 IR, Horse Creek, Deadwood Creek, and Whitewood Creek were listed for TSS and E. coli. Table 1-1 is a summary of the 2018 IR’s TMDLs in the watershed. The table also lists the stream reach, impaired beneficial use, impairment parameter, and water-quality criteria. The impaired segments within the watershed are shown on Figure 1-2.

In 2001, the BFRWP completed a watershed assessment project that led to the approval of six TMDLs for the Belle Fourche River and Horse Creek. Also, a 10-year plan was developed to implement the TMDL recommendations by installing irrigation, riparian, and grazing BMPs in the watershed. In 2004, the BFRWP obtained a Clean Water Act Section 319 Grant to begin implementing recommended BMPs. Currently, the BFRWP is in its 15th year of implementing BMPs in the watershed and has been funded into 2021 with the Segment 9 Project. Funding and support for the project is provided by local ranchers and farmers, the BFRWP, BFID, Butte, Lawrence, and Meade Counties, SD DENR, Wyoming Department of Environmental Quality (WDEQ), South Dakota State University (SDSU), and the South Dakota School of Mines & Technology (SDSM&T), Natural Resources Conservation Service (NRCS), US Bureau of Reclamation (USBR), US Fish and Wildlife Service (USFWS), US Geological Survey (USGS), and the US Environmental Protection Agency’s (EPA) Clean Water Act Section 319 Grant.
Figure 1-1, Location of the Belle Fourche River Watershed within South Dakota.
Table 1-1. Summary for Impaired Streams within the Belle Fourche River Watershed included in the South Dakota 2018 Integrated Report

<table>
<thead>
<tr>
<th>Stream</th>
<th>Segment Descriptions (Assessment Unit Identifier – AUID)</th>
<th>Beneficial Use</th>
<th>Impairment Parameter</th>
<th>Water Quality Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle Fourche River</td>
<td>Wyoming Border to Redwater River (SD-BF-R-BELLE_FOURCHE_01)</td>
<td>Immersion Recreation</td>
<td>E. coli</td>
<td>126(a)/235(b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited Contact Recreation</td>
<td>E. coli</td>
<td>630(a)/1,178(b)</td>
</tr>
<tr>
<td></td>
<td>Redwater River to Whitewood Creek (SD-BF-R-BELLE_FOURCHE_02)</td>
<td>Warm-Water Permanent Fish Life</td>
<td>TSS (mg/L)</td>
<td>90(a)/158(b)</td>
</tr>
<tr>
<td></td>
<td>Whitewood Creek to Willow Creek (SD-BF-R-BELLE_FOURCHE_03)</td>
<td>Warm-Water Permanent Fish Life</td>
<td>TSS (mg/L)</td>
<td>90(a)/158(b)</td>
</tr>
<tr>
<td></td>
<td>Willow Creek to Alkali Creek (SD-BF-R-BELLE_FOURCHE_04)</td>
<td>Warm-Water Permanent Fish Life</td>
<td>TSS (mg/L)</td>
<td>90(a)/158(b)</td>
</tr>
<tr>
<td></td>
<td>Alkali Creek to Mouth (SD-BF-R-BELLE_FOURCHE_05)</td>
<td>Immersion Recreation</td>
<td>E. coli</td>
<td>126(a)/235(b)</td>
</tr>
<tr>
<td>Horse Creek</td>
<td>Indian Creek to Mouth (SD-BF-R-HORSE_01_USGS)</td>
<td>Limited Contact Recreation</td>
<td>E. coli</td>
<td>630(a)/1,178(b)</td>
</tr>
<tr>
<td>Deadwood Creek</td>
<td>Rutabaga Gulch to Whitewood Creek (SD-BF-R-DEADWOOD_01)</td>
<td>Warm-Water Permanent Fish Life</td>
<td>TSS (mg/L)</td>
<td>90(a)/158(b)</td>
</tr>
<tr>
<td></td>
<td>Bear Butte Creek to SS, T4N, R4E (SD-BF-R-STRAWBERRY_01)</td>
<td>Immersion Recreation</td>
<td>E. coli</td>
<td>126(a)/235(b)</td>
</tr>
<tr>
<td>Whitewood Creek</td>
<td>Gold Run Creek to Deadwood Creek (SD-BF-R-WHITEWOOD_02)</td>
<td>Immersion Recreation</td>
<td>E. coli</td>
<td>126(a)/235(b)</td>
</tr>
<tr>
<td>Whitewood Creek</td>
<td>Deadwood Creek to Spruce Gulch (SD-BF-R-WHITEWOOD_03)</td>
<td>Immersion Recreation</td>
<td>E. coli</td>
<td>126(a)/235(b)</td>
</tr>
<tr>
<td>Whitewood Creek</td>
<td>Spruce Gulch to Sandy Creek (SD-BF-R-WHITEWOOD_04)</td>
<td>Immersion Recreation</td>
<td>E. coli</td>
<td>126(a)/235(b)</td>
</tr>
<tr>
<td>Whitewood Creek</td>
<td>Sandy Creek to I-90 (SD-BF-R-WHITEWOOD_05)</td>
<td>Cold-Water Marginal Fish Life</td>
<td>Dissolved Cadmium (mg/L)</td>
<td>Equal to or less than the result from Equation 9 in Appendix A of Surface Water Quality Standards</td>
</tr>
<tr>
<td>Whitewood Creek</td>
<td>I-90 to Crow Creek (SD-BF-R-WHITEWOOD_06)</td>
<td>Warm-Water Permanent Fish Life</td>
<td>pH</td>
<td>6.5–8.8</td>
</tr>
<tr>
<td>Whitewood Creek</td>
<td>Crow Creek to Mouth (SD-BF-R-WHITEWOOD_07)</td>
<td>Limited Contact Recreation</td>
<td>E. coli</td>
<td>630(a)/1,178(b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warm-Water Permanent Fish Life</td>
<td>TSS (mg/L)</td>
<td>90(a)/158(b)</td>
</tr>
</tbody>
</table>
Figure 1-2. Impaired Stream Reaches on the Belle Fourche River and Horse Creek in South Dakota.
2.0 PROJECT GOALS AND OBJECTIVES

The original project goal was to bring the Belle Fourche River into compliance for TSS and *E. coli* by implementing the recommended BMPs by 2014. This project has exceeded that timeframe; however, progress has been made on impaired waterbodies, and further implementation will be prioritized on the Belle Fourche River and Horse Creek where measurable water quality improvements are likely to be attained. In this project segment, the TSS concentration reduction goal is 30 mg/L. To accomplish this goal, this project segment had the following three objectives:

1. Implement BMPs Recommended to Reduce TSS

Progress toward reaching the goals of the TMDL will continue to be tracked to ensure that the BMPs are effective and that the proper BMPs are being implemented.

2.1 PLANNED AND ACTUAL MILESTONES, PRODUCTS, AND COMPLETION DATES

Objective 1. Implement BMPs Recommended to Reduce TSS. This objective consisted of two tasks: (1) improving irrigation management and (2) implementing riparian improvements and improved cropping systems, which are discussed further in Chapter 3.0. The products included: 11 sprinkler systems on 888 acres; 8 producers scheduling irrigation on 1,800 acres; 5,300 feet of laterals replaced with pipelines by the BFID; 6,780 feet of on-farm earthen ditches replaced with pipelines; improvements on 2,000 riparian acres and 22,000 rangeland acres; and cover crops planted on over 100 acres.

Objective 2. Conduct Public Outreach and Education, Implementation Record Keeping, Cultural Resources, Engineering, Audits, Report Writing, and Future Grants Writing. Approximately 25 outreach activities were conducted and involved approximately 10,000 participants. Also, there were six public meetings, one website, two watershed tours, two workshops, five public information booths, and eight soil-quality demonstrations conducted during the segment. Additionally, two Grant Tracking and Reporting System (GRTS) reports and this final report were written. These activities are further discussed in Chapter 4.0 of this report.

Objective 3. Complete Essential Water Quality Monitoring and TMDL Development. Water quality samples were collected by the USGS at gaging stations, by the SD DENR at WQM stations, and by the BFRWP at six sites within the watershed. Water quality data is discussed in Chapter 5.0 of this report.

Table 2-1 lists the project objectives along with their products, planned milestone completion dates, and actual milestone completion dates. *All BMPs were completed by the July 2019 deadline.*
Table 2-1. Planned Versus Actual Milestones and Completion Dates

<table>
<thead>
<tr>
<th>Objectives and Products</th>
<th>Planned Milestone</th>
<th>Actual Milestone</th>
<th>Planned Completion</th>
<th>Actual Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 1. Implement Recommended BMPs to Reduce TSS and E. coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 1. Improve Irrigation Delivery/Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Replace BFID Open Laterals with Pipe</td>
<td>8,000 feet, 880 acres (11 pivots)</td>
<td>5,300 feet, 888 acres (11 pivots)</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
<tr>
<td>1b. Convert Flood Irrigation to Sprinklers</td>
<td>8,000 feet, 1,000 acres</td>
<td>6,780 feet, 1,800 acres</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
<tr>
<td>1c. Replace Open On-Farm Ditches to Pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 2. Implement Riparian and Range BMPs</td>
<td>3,000 riparian acres, 25,000 range acres</td>
<td>2,000 riparian acres, 22,000 range acres</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
<td>200 acres</td>
<td>100 acres</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Record Keeping, Cultural Resources, Report Writing, and Annual Audits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 4. Public Outreach, Record Keeping, Cultural Resources, Audits, Report Writing</td>
<td>6 meetings, 1 website, 2 tours, 2 workshops, 5 booths, 8 soil health demos</td>
<td>6 meetings, 1 website, 2 tours, 2 workshops, 5 booths, 8 soil health demos</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
<tr>
<td>Objective 3. Complete Water Quality Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring - Collect samples and measure flow</td>
<td>5 USGS gage stations, 5 WQM stations, 2 Horse Creek sites, 1 Indian Creek site</td>
<td>5 USGS gage stations, 5 WQM stations, 2 Horse Creek sites, 1 Indian Creek site</td>
<td>July 2019</td>
<td>July 2019</td>
</tr>
</tbody>
</table>

2.2 EVALUATION OF GOAL ATTAINMENT

Project success was evaluated by comparing project outcomes with the planned milestones. Sediment reduction goals were met for this segment, and BMP accomplishments were close to the goals outlined in the project implementation plan. Some goals were not completely met, and others were higher than expected, which resulted in sediment reductions higher than expected. Further explanations of these changes are shown in Section 3.1 of this report. The following milestones were obtained:

- Implemented several recommended BMPs from the approved TMDLs
- Completed approximately 25 educational and outreach activities, which led to more project participation, completion of annual GRTS reports and this final report, and two federal audits.

This project successfully implemented BMPs to reduce sediment. BMPs were implemented and are estimated to reduce TSS in the Belle Fourche River by approximately 5,558 tons per year. Table 2-2 shows pollutant reductions that were achieved by each implemented BMP. Sediment reductions reported in tons per year and nitrogen and phosphorous in pounds per year were derived from combining Spreadsheet Tool for Pollutant Load (STEPL) and available reference (book) values.
Table 2-2. Pollutant Reduction Achieved by Each Best Management Practice Implemented

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>Treated Acres</th>
<th>Step/L/Book Value Sediment Reductions (tons/year)</th>
<th>Step/L/Book Value Nitrogen Reductions (lbs/yr)</th>
<th>Step/L/Book Value Phosphorous Reductions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Irrigation Systems</td>
<td>888</td>
<td>4,174</td>
<td>2,202</td>
<td>1,883</td>
</tr>
<tr>
<td>Irrigation Scheduling</td>
<td>1,800</td>
<td>252</td>
<td>104</td>
<td>90</td>
</tr>
<tr>
<td>Managed Grazing</td>
<td>24,000</td>
<td>912</td>
<td>1,440</td>
<td>360</td>
</tr>
<tr>
<td>Improved Cropping</td>
<td>100</td>
<td>220</td>
<td>812</td>
<td>300</td>
</tr>
<tr>
<td>Totals</td>
<td>26,788</td>
<td>5,558</td>
<td>4,559</td>
<td>2,617</td>
</tr>
</tbody>
</table>

3.0 BEST MANAGEMENT PRACTICES

Installing the recommended BMPs in the Belle Fourche River TMDL continued during this project segment and included funding from local ranchers and farmers, the BFID, USFWS, and NRCS along with the EPA’s 319 program. The following BMPs were installed:

- Eleven (11) irrigation sprinkler systems to replace flood irrigation on 888 acres
- Seven (7) producers completed irrigation scheduling on approximately 1,800 acres
- BFID converted 5,300 feet open, earthen laterals to underground pipelines
- Eight (8) producers converted 6,780 feet on-farm earthen ditches to underground pipelines
- Thirteen (13) water development projects, three water development and riparian fencing projects, three pasture cross-fencing projects, and a creek crossing were installed
- Seventeen (17) producers improved 2,000 riparian acres and 22,000 rangeland acres
- Improved cropping systems on over 100 acres of cropland.

Table 3-1 provides a status of the BMP implementation planned and implemented to date. The general locations of all BMPs implemented to date by project segment are shown in Figure 3-1. Figure 3-2 shows the irrigation and riparian/range BMPs implemented to date in the watershed. Table 3-2 lists the BMP installed and the 319 funding, local match, and total funds expended during Segment 8.

Table 3-1. Best Management Practices Implemented

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>Planned This Segment</th>
<th>Installed This Segment</th>
<th>Installed to Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Irrigation Systems</td>
<td>11 on 880 acres</td>
<td>11 on 888 acres</td>
<td>133</td>
</tr>
<tr>
<td>Irrigation Scheduling</td>
<td>20 producers on 1,000 acres</td>
<td>7 producers on 1,800 acres</td>
<td>N/A</td>
</tr>
<tr>
<td>Managed Riparian Grazing</td>
<td>3,000 acres</td>
<td>2,000 acres</td>
<td>5,000</td>
</tr>
<tr>
<td>Managed Upland Grazing</td>
<td>25,000 acres</td>
<td>22,000 acres</td>
<td>53,400</td>
</tr>
<tr>
<td>Improved Cropping Practices</td>
<td>200 acres</td>
<td>100 acres</td>
<td>400</td>
</tr>
<tr>
<td>Complete Essential Water Quality</td>
<td>13 sites</td>
<td>13 sites</td>
<td>N/A</td>
</tr>
<tr>
<td>Information and Education Events</td>
<td>20</td>
<td>23</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Figure 3-1. General Location of Completed Best Management Practices by Project Segment within the Belle Fourche River Watershed.
Figure 3-2. General Location of All Completed Producer-Irrigation and Riparian/Range Best Management Practices within the Belle Fourche River Watershed.
Table 3-2. Best Management Practices Implemented with 319 Funding and Local Match

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>Installed This Segment</th>
<th>319 $ and (%)</th>
<th>Local $ and (%)</th>
<th>Total ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Irrigation Systems</td>
<td>11 projects on 888 acres</td>
<td>$346,623 (30%)</td>
<td>$815,744 (70%)</td>
<td>$1,162,367</td>
</tr>
<tr>
<td>Irrigation Scheduling</td>
<td>7 projects on 1,800 acres</td>
<td>$0</td>
<td>$10,000 (100%)</td>
<td>$10,000</td>
</tr>
<tr>
<td>Managed Riparian Grazing</td>
<td>20 projects on 2,000 riparian acres and 22,000 rangeland acres</td>
<td>$195,351 (58%)</td>
<td>$138,822 (42%)</td>
<td>$334,173</td>
</tr>
<tr>
<td>Improved Cropping Practices</td>
<td>2 projects on 100 acres</td>
<td>$0</td>
<td>$10,000 (100%)</td>
<td>$10,000</td>
</tr>
<tr>
<td>Total</td>
<td>$541,974 (36%)</td>
<td>$974,566 (64%)</td>
<td>$1,516,540</td>
<td></td>
</tr>
</tbody>
</table>

3.1 REducing Nonused Irrigation Water and Improving Efficiency

3.1.1 On-Farm Irrigation Improvements

Eleven center-pivot sprinklers were installed to replace flood irrigation on 888 acres during Segment 8. Figure 3-3 shows a flood-irrigated field and inefficient water use that leads to an increased sediment load in the river. Figure 3-4 shows a Segment 8 partially-funded center-pivot irrigation system that greatly reduces runoff of excess water. There have been 242 center-pivot sprinklers on approximately 19,930 acres installed in the watershed. The BFRWP has partnered on 133 of those 242 sprinklers systems with the remaining systems funded by NRCS or by individual producers.

Overall, there is an estimated 78,500 irrigated acres within the watershed. Of these irrigated acres, there are approximately 57,000 acres irrigated by water delivered by the Belle Fourche Irrigation District (BFID). Also, there are approximately 9,300 irrigated acres in the Spearfish Creek and Redwater River drainages. The remaining 12,200 acres are irrigated using surface water and groundwater sources in Butte and Meade counties. Approximately 25 percent (19,930 acres) of these irrigated fields have been converted to sprinkler systems, which include center-pivots and siderolls or wheel lines, during the BFRWP’s implementation segments. In Segment 8, there were approximately 16,000 surface flood irrigated acres identified that use gated pipe, furrows, or corrugations which could be converted to sprinkler systems because of their soil conditions and field dimensions. If these acres were converted, implementation efforts would reach more than 45 percent of the total potential conversion from flood irrigation to sprinklers irrigation. In comparison, there is 25,227 irrigated acres within the Horse Creek drainage. About 14 percent (3,427 acres) of these irrigated fields have been converted to sprinklers. The remaining 86 percent (21,800 acres) within the Horse Creek drainage is flood irrigated with approximately 5,075 acres that have favorable soil properties and could be converted to sprinklers.

3.1.2 Irrigation Scheduling

Sprinkler irrigation improves application efficiencies and reduces field runoff that decreases sediment in receiving waters. Proper timing of irrigation is imperative to maximize these benefits. The BFRWP has partnered with local participating producers to continue adopting this conservation technology. During this funding segment, technical assistance was provided to 7 producers on approximately 1,800 acres. The participating irrigators were provided sensors and a datalogger to record soil moisture and technical assistance from BFRWP staff to schedule irrigation applications based on soil saturation which greatly increased water efficiencies and reduced excess field runoff.
Figure 3-3. Flood-Irrigated Field Demonstrating Inefficient Water Use That Leads to Sediment Runoff.

Figure 3-4. Center-Pivot Irrigation System Installed in the Belle Fourche River Watershed.
3.2 RANGE RIPARIAN IMPROVEMENTS

Improved grazing distribution improves the integrity of the riparian corridor of the watershed. Healthy riparian areas are integral to trapping sediment from runoff and reducing TSS entering the Belle Fourche River. After installing riparian/grazing BMPs, riparian areas improved within the watershed.

Seventeen producers participated in range/riparian improvement projects during this segment. These producers installed 13 water development projects, 3 water development and riparian fencing projects, 3 pasture cross-fencing projects, and 1 creek crossing project. These projects improved 2,000 riparian acres and 22,000 rangeland acres within the watershed. The location of the riparian/range improvement projects completed before and during Segment 8 are shown in Figure 3-2. In addition to 319 projects, the NRCS EQIP and CSP-funded projects in the watershed. Figure 3-5 shows a cross fence installation for improving grazing management. Figure 3-6 shows a livestock watering facility installed in the uplands to replace watering on the Belle Fourche River and Figure 3-7 is a photograph buried pipe being installed for livestock water development.

Figure 3-5. Cross Fence Installed in the Uplands to Improved Grazing Management within the Belle Fourche River Watershed.

3.3 IMPROVED CROPPING PRACTICES

The BFRWP funded two cover-crop demonstration sites that provided a stipend to the willing participants and demonstrated cover-crop and no-till farming practices on approximately 100 acres. In the fall of 2017, the BFRWP partnered with SDSU, NRCS, and the South Dakota Soil Health Coalition to conduct a field day that showcased these sites. The event was well attended by local producers and producers from outside of the watershed. The event provided an excellent platform to transfer knowledge. In addition to this field day, the BFRWP cosponsored two soil health workshops in Belle Fourche to further promote trends toward improved cropping practices in the watershed.
Figure 3-6. Livestock Watering Facility Installed in the Uplands to Replace Watering on the Belle Fourche River.

Figure 3-7. Buried Pipeline Installed to Supply Livestock Watering Facilities within the Belle Fourche River Watershed.
4.0 SUMMARY OF PUBLIC PARTICIPATION AND OUTREACH

Approximately 23 public outreach events were completed during this segment. These events included public meetings, informational booths, website maintenance, radio sound bites, rainfall simulator demonstrations, and watershed tours. Outreach efforts reached an estimated 9,500 people. A summary of the events are listed in Table 4-1. The BFRWP purchased a soil-quality demonstration trailer in 2009 to demonstrate the effects of erosion on soils and how they relate to TSS. The trailer was used at several events sponsored by the BFRWP. The BFRWP hosted six meetings to provide updates on project work and progress. The BFRWP website continues to be updated with events and project status (www.bellefourchewatershed.org). Outreach activities have helped to increase participation and support for the BFRWP and also gave the BFRWP several contacts for BMP installation. Several informative sound bites were broadcasted on the local radio to increase public awareness of water quality issues and to promote project involvement.

<table>
<thead>
<tr>
<th>Type of Education and Outreach</th>
<th>Date</th>
<th>Number of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRWP Meetings (6 Meetings)</td>
<td>July 2017 - July 2019</td>
<td>100</td>
</tr>
<tr>
<td>Society for Range Management Range Tour and Rainfall Simulator Demo</td>
<td>2017, 2018, 2019</td>
<td>100</td>
</tr>
<tr>
<td>Booth at the Vale Ag Show</td>
<td>2018, 2019</td>
<td>400</td>
</tr>
<tr>
<td>No-Till/Cover-Crop Tour Demonstration Site Tour</td>
<td>2018</td>
<td>50</td>
</tr>
<tr>
<td>Booth at the Ranchers Roundup in Union Center</td>
<td>2017, 2018</td>
<td>400</td>
</tr>
<tr>
<td>South Dakota Adult and Youth Range Camp</td>
<td>2018, 2019</td>
<td>150</td>
</tr>
<tr>
<td>South Dakota Leopold Award Sponsorship</td>
<td>2018, 2019</td>
<td>NA</td>
</tr>
<tr>
<td>Butte County Range and Soil Health Tour</td>
<td>2018, 2019</td>
<td>50</td>
</tr>
<tr>
<td>Meade County Range and Soil Health Tour</td>
<td>2018, 2019</td>
<td>50</td>
</tr>
<tr>
<td>Informational Radio Sound Bites</td>
<td>2017, 2018, 2019</td>
<td>7,000</td>
</tr>
<tr>
<td>BFRWP Website</td>
<td>2017, 2018, 2019</td>
<td>1,200</td>
</tr>
</tbody>
</table>

The BFRWP sponsored or cosponsored eight tours in the watershed during Segment 8. These tours included local producers; state and federal agency staff; local, state, and federal government officials; and the public. Partners in these tours included the Butte, Lawrence, and Elk Creek Conservation Districts; the South Dakota Association of Conservation Districts; SDSU Cooperative Extension; South Dakota Society for Range Management; NRCS; and US Bureau of Reclamation.

These tours showcased projects that were sponsored by the BFRWP that included irrigation demonstrations in the BFID, rangeland demonstrations on ranches in the watershed, and an improved cropping system demonstration site tour. These outreach activities helped increase participation and support for the BFRWP and also gave the BFRWP several contacts for BMP installation. The Elk Creek Conservation District’s Range and Soil Health Tour in the Belle Fourche River Watershed demonstrates accomplishments is illustrated in Figure 4-1. Figure 4-2 shows a Belle Fourche River Watershed Partnership Soil Health and Rainfall Simulator Demonstration during a watershed tour.
Figure 4-1. Elk Creek Conservation District Range and Soil Health Tour in the Belle Fourche River Watershed.

Figure 4-2. Belle Fourche River Watershed Partnership Soil Health and Rainfall Simulator Demonstration.
5.0 MONITORING RESULTS

5.1 IMPAIRED WATERBODIES AND APPROVED TOTAL MAXIMUM DAILY LOADS

The Belle Fourche River from the Wyoming-South Dakota state line to the Cheyenne River is identified as impaired in South Dakota's 2018 IR because of elevated TSS and E. coli concentrations. In the 2018 IR, Horse Creek, Deadwood Creek, and Whitewood Creek were listed as having TSS and E. coli approved TMDLs. A summary of the TMDL streams within the watershed that are included in the 2018 IR was listed in Table 1-1. The impaired segments within the watershed were also shown on Figure 1-2. There are other impaired waterbodies occurring within the watershed; however, they are not currently the primary focus of the BFRWP project implementation plan.

5.2 BELLE FOURCHE RIVER WATERSHED RAPID GEOMORPHIC ASSESSMENT

In March 2017, SD DENR staff evaluated 25 sites along the Belle Fourche River, Horse Creek, and Indian Creek using a Rapid Geomorphic Assessment (RGA). Channels near public bridges were assessed using the RGA’s metrics for bed material bed, bank protection, incision, constriction, erosion, bank instability, riparian cover, accretion, and channel evolution stage. Some channels have stable bank profiles as shown in Figure 5-1. Also, there were no channels observed that occurred directly downstream of tributaries or irrigation returns entering the river. Other channels observed had conditions similar to those shown in Figure 5-2, Figure 5-3, and Figure 5-4.

Figure 5-1, Bank Cover, Boulder/Cobble Substrate, and Bank Protection on the Belle Fourche River Above the Fruitdale Road Bridge.
Figure 5-2. Eroded Banks, Silt Substrate, and Channel Widening on the Belle Fourche River Above the US Highway 212 Bridge.

Figure 5-3. Eroded Banks, Silt Substrate, and Downcut Channel on Horse Creek Above the Eichler Road Bridge.
5.3 WATER QUALITY SAMPLING

Since January 1995, the BFRWP in cooperation with the SD DENR and USGS have collected water quality samples at various sites on the Belle Fourche River and its tributaries to evaluate levels of *E. coli* and TSS. During Segment 8, six sites on the Belle Fourche River; 460130 (WQM130), 460683 (WQM83), 460681 (WQM81), BF6, 460880 (WQM21), and 460676 (WQM76) were sampled from May through September in 2017, 2018, and 2019. The SD DENR sampled the Belle Fourche River at WQM stations 460681 (WQM81), 460880 (WQM21), and 460676 (WQM76) and the BFRWP’s consultant, RESPEC, collected samples on the Belle Fourche River at WQM stations 460130 (WQM130), 460683 (WQM83), and BF6. RESPEC also collected samples at two sites on Horse Creek (HCR02 and HCR04) and one site on Indian Creek (ICR03) during this segment. These sites are shown in Figure 5-5, described below, and the *E. coli* and TSS sampling results from these sites are summarized in Sections 5.3.1. and 5.3.2.

- The 460130 (WQM130) site is located on the river in Belle Fourche below the bridge on US Highway 85 and monitors the river above where the Redwater River enters and the BFID diverts water into the Belle Fourche Reservoir (Orman Dam) via the Inlet Canal.

- The 460683 (WQM83) site is located on the river about 0.5 miles south of US Highway 212 on the Vale Cut Off Road. This site is situated to monitor any irrigation returns contributed to the river from the Johnson, Korwelt, Mawer, and Sorenson laterals.
The 460681 (WQM81) site is located on the river about 5 miles south of Newell on US Highway 79 and 1.5 miles northwest of Vale. This site is situated to monitor contributions from Whitewood Creek and return water from the Baldwin, Indian Creek, Shaw, and Wilson laterals.

The BF6 site is located on the river about 7.5 miles east of Vale on the Valley Township Road (Bismarck Branch Road). This site is situated to monitor contributions from Horse Creek, Willow Creek, and irrigation return water from the Perry, Richard, Vale, and Wood laterals.

The 460880 (WQM42) site is located on the river about 20 miles east of Sturgis on US Highway 34 and is situated above where the Bear Butte Creek enters the river and monitor contributions to the river from Ninemile Creek and irrigation return water from the South Canal.

The 460676 (WQM76) site is located on the river about 24 miles north of Wasta or 5 miles north of Elm Spring on Elm Springs Road and is approximately 15 mile upstream of where the river enters the Cheyenne River. This site is the furthest downstream station and monitors contributions to the river from Bear Butte Creek, Alkali Creek, Elm Creek, and Hay Creek.

The ICR03 site is located on Indian Creek about 7 miles north of US Highway 212 on Arpan Road. The site is situated to monitor the upper Indian Creek drainage and any return water from some portions of the North Canal and Arpan Lateral.

The HCR04 site is located on Horse Creek about 9 miles north of Nisland and US Highway 212 on Riley Road. The site is situated to monitor upper Horse Creek and Lonetree Creek.

The HCR02 site is located on Horse Creek about 3 miles east of US Highway 79 on Wilson Cemetery Road and 0.3 miles north on Youngberg Road. HCR02 is 5 miles southeast of Newell and 3 miles northeast of Vale. This site is situated to monitor contributions to Horse Creek from Indian Creek and irrigation return water from the Beresford, Indian Creek, and McLung laterals.

5.3.1 BELLE FOURCHE RIVER WATER QUALITY DATA

The *E. coli* and TSS sample results are summarized in Table 5-1 and are listed from upstream to downstream in the table. Data results were used to calculate the percent exceedance of the Immersion Recreation single-sample *E. coli* bacteria criterion of 235 mpn/100 mL and the Warm-Water Permanent Fish Life single-sample TSS daily maximum criterion of 158 mg/L. All six sites had at least one exceedance of the *E. coli* bacteria and the TSS criteria as shown in Table 5-1. Figure 5-6 through Figure 5-17 displays the *E. coli* and TSS sample results at sites on the river. The WQM130, WQM83, and WQM76 sites had the highest percentages of the *E. coli* bacteria and TSS criteria exceedances. BF6 also had high percentages of the *E. coli* bacteria and the TSS criteria but was only sampled in 2019.

5.3.2 HORSE CREEK AND INDIAN CREEK WATER QUALITY DATA

The *E. coli* and TSS sample results are summarized in Table 5-2 and are listed from upstream to downstream in the table. Data results were used to calculate the percent exceedance of the Limited Contact Recreation single-sample *E. coli* bacteria criterion of 1,178 mpn/100 mL and the Warm-Water Semi-permanent Fish Life single-sample TSS daily maximum criterion of 158 mg/L. Figure 5-18 through Figure 5-23 displays the *E. coli* and TSS sample results at sites on the Horse Creek and Indian Creek. All three sites had at least two exceedances of the *E. coli* bacteria criterion and at least one exceedance of the TSS criterion. The ICR03 site had the highest percentage of the *E. coli* bacteria criterion exceedances. The HCR02 site had the highest percentage of the TSS criterion exceedances.
Figure 5-5. Water Quality Monitoring Sites located on the Belle Fourche River, Horse Creek, and Indian Creek Sampled During the BFRWP’s Segment 8 Project.
Table 5-1. *E. coli* and TSS Sample Results (Exceedances) for WQM130, WQM83, WQM81, WQM80, and WQM76 during Segment 8

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>WQM130 E. coli (mpn/100mL)</th>
<th>TSS (mg/L)</th>
<th>WQM83 E. coli (mpn/100mL)</th>
<th>TSS (mg/L)</th>
<th>WQM81 E. coli (mpn/100mL)</th>
<th>TSS (mg/L)</th>
<th>BF6 E. coli (mpn/100mL)</th>
<th>TSS (mg/L)</th>
<th>WQM21 E. coli (mpn/100mL)</th>
<th>TSS (mg/L)</th>
<th>WQM76 E. coli (mpn/100mL)</th>
<th>TSS (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/9/17</td>
<td>199</td>
<td>106.0</td>
<td>6,930</td>
<td>64.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5/24/17</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>178</td>
<td>68.0</td>
<td>NA</td>
<td>NA</td>
<td>178</td>
<td>68.0</td>
<td>16</td>
<td>55.0</td>
</tr>
<tr>
<td>6/8/17</td>
<td>6,870</td>
<td>4,790.0</td>
<td>108</td>
<td>83.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6/19/17</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>54.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>25</td>
<td>87.0</td>
</tr>
<tr>
<td>7/12/17</td>
<td>110</td>
<td>5.2</td>
<td>88</td>
<td>48.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>7/18/17</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>32</td>
<td>23.0</td>
<td>NA</td>
<td>NA</td>
<td>32</td>
<td>23.0</td>
<td>47</td>
<td>68.0</td>
</tr>
<tr>
<td>8/3/17</td>
<td>148</td>
<td>52.4</td>
<td>30</td>
<td>54.8</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8/28/17</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>126</td>
<td>46.0</td>
<td>NA</td>
<td>NA</td>
<td>126</td>
<td>46.0</td>
<td>579</td>
<td>310.0</td>
</tr>
<tr>
<td>8/30/17</td>
<td>151</td>
<td>216.0</td>
<td>52</td>
<td>45.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>551</td>
<td>633.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/28/17</td>
<td>79</td>
<td>151.0</td>
<td>35</td>
<td>23.2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5/10/18</td>
<td>488</td>
<td>63.2</td>
<td>63</td>
<td>76.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5/15/18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>126</td>
<td>46.0</td>
<td>NA</td>
<td>NA</td>
<td>126</td>
<td>46.0</td>
<td>579</td>
<td>310.0</td>
</tr>
<tr>
<td>6/5/18</td>
<td>NA</td>
<td>551</td>
<td>633.0</td>
</tr>
<tr>
<td>6/7/18</td>
<td>271</td>
<td>80.4</td>
<td>50</td>
<td>69.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>7/6/18</td>
<td>457</td>
<td>132.0</td>
<td>109</td>
<td>44.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>7/12/18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>49</td>
<td>49.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8/2/18</td>
<td>98</td>
<td>16.8</td>
<td>62</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8/14/18</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>16.0</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>16.0</td>
<td>113</td>
<td>20.0</td>
</tr>
<tr>
<td>8/28/18</td>
<td>114</td>
<td>28.0</td>
<td>132</td>
<td>50.4</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>9/25/18</td>
<td>579</td>
<td>70.4</td>
<td>102</td>
<td>47.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>55</td>
<td>55.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5/16/19</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>32</td>
<td>97.0</td>
<td>613</td>
<td>110.0</td>
<td>32</td>
<td>97.0</td>
<td>68</td>
<td>136.0</td>
</tr>
<tr>
<td>5/17/19</td>
<td>138</td>
<td>166.0</td>
<td>365</td>
<td>114.0</td>
<td>126</td>
<td>104.0</td>
<td>NA</td>
<td>126</td>
<td>104.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6/6/19</td>
<td>NA</td>
<td>153</td>
<td>588.0</td>
</tr>
<tr>
<td>6/14/19</td>
<td>449</td>
<td>366.0</td>
<td>242</td>
<td>166.0</td>
<td>182</td>
<td>131.0</td>
<td>387</td>
<td>129.0</td>
<td>182</td>
<td>131.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>7/9/19</td>
<td>365</td>
<td>345.0</td>
<td>435</td>
<td>285.0</td>
<td>1,120</td>
<td>372.0</td>
<td>435</td>
<td>330.0</td>
<td>1,120</td>
<td>372.0</td>
<td>727</td>
<td>692.0</td>
</tr>
<tr>
<td>8/7/19</td>
<td>49</td>
<td>191.0</td>
<td>70</td>
<td>38.0</td>
<td>141</td>
<td>26.0</td>
<td>44</td>
<td>14.0</td>
<td>141</td>
<td>26.0</td>
<td>40</td>
<td>202.0</td>
</tr>
<tr>
<td>9/5/19</td>
<td>19</td>
<td>88.8</td>
<td>1</td>
<td>25.6</td>
<td>52</td>
<td>29.2</td>
<td>62</td>
<td>14.4</td>
<td>52</td>
<td>29.2</td>
<td>5</td>
<td>27.0</td>
</tr>
</tbody>
</table>

Exceedances (#): 7 6 4 2 1 1 3 1 1 1 3 3
Exceedances (%): 41 35 24 12 10 10 60 20 10 10 20 33
Table 5-2. *E. coli* and TSS Sample Results (Exceedances) for HCR02, HCR04, and ICR03 during Segment 8

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>HCR04</th>
<th>ICR03</th>
<th>HCR02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli (mpn/100 mL)</td>
<td>TSS (mg/L)</td>
<td>E. coli (mpn/100 mL)</td>
</tr>
<tr>
<td>5/9/17</td>
<td>NA</td>
<td>NA</td>
<td>1,540</td>
</tr>
<tr>
<td>5/25/17</td>
<td>NA</td>
<td>NA</td>
<td>216</td>
</tr>
<tr>
<td>6/8/17</td>
<td>236</td>
<td>10.8</td>
<td>201</td>
</tr>
<tr>
<td>6/23/17</td>
<td>2,420</td>
<td>133.0</td>
<td>866</td>
</tr>
<tr>
<td>7/12/17</td>
<td>1,050</td>
<td>10.8</td>
<td>158</td>
</tr>
<tr>
<td>7/20/17</td>
<td>NA</td>
<td>NA</td>
<td>1,730</td>
</tr>
<tr>
<td>8/3/17</td>
<td>3</td>
<td>24.0</td>
<td>4,110</td>
</tr>
<tr>
<td>8/17/17</td>
<td>12</td>
<td>34.4</td>
<td>727</td>
</tr>
<tr>
<td>8/30/17</td>
<td>NA</td>
<td>NA</td>
<td>1,550</td>
</tr>
<tr>
<td>9/21/17</td>
<td>NA</td>
<td>NA</td>
<td>613</td>
</tr>
<tr>
<td>9/28/17</td>
<td>NA</td>
<td>NA</td>
<td>101</td>
</tr>
<tr>
<td>5/10/18</td>
<td>29</td>
<td>18.8</td>
<td>549</td>
</tr>
<tr>
<td>6/7/18</td>
<td>11</td>
<td>4.0</td>
<td>249</td>
</tr>
<tr>
<td>6/21/18</td>
<td>24,200</td>
<td>802.0</td>
<td>15,500</td>
</tr>
<tr>
<td>7/6/18</td>
<td>504</td>
<td>22.4</td>
<td>233</td>
</tr>
<tr>
<td>7/19/18</td>
<td>56</td>
<td>29.6</td>
<td>44</td>
</tr>
<tr>
<td>8/2/18</td>
<td>37</td>
<td>20.0</td>
<td>108</td>
</tr>
<tr>
<td>8/17/18</td>
<td>20</td>
<td>12.4</td>
<td>91</td>
</tr>
<tr>
<td>8/28/18</td>
<td>1</td>
<td>21.6</td>
<td>1,200</td>
</tr>
<tr>
<td>9/11/18</td>
<td>6</td>
<td>23.2</td>
<td>1,410</td>
</tr>
<tr>
<td>9/25/18</td>
<td>326</td>
<td>14.8</td>
<td>166</td>
</tr>
<tr>
<td>5/17/19</td>
<td>NA</td>
<td>NA</td>
<td>816</td>
</tr>
<tr>
<td>5/30/19</td>
<td>20</td>
<td>14.4</td>
<td>52</td>
</tr>
<tr>
<td>6/14/19</td>
<td>NA</td>
<td>NA</td>
<td>1,450</td>
</tr>
<tr>
<td>6/25/19</td>
<td>33</td>
<td>10.4</td>
<td>71</td>
</tr>
<tr>
<td>7/9/19</td>
<td>387</td>
<td>33.6</td>
<td>291</td>
</tr>
<tr>
<td>7/25/19</td>
<td>687</td>
<td>55.6</td>
<td>613</td>
</tr>
<tr>
<td>8/7/19</td>
<td>127</td>
<td>20.8</td>
<td>80</td>
</tr>
<tr>
<td>8/20/19</td>
<td>131</td>
<td>16.0</td>
<td>50</td>
</tr>
<tr>
<td>9/5/19</td>
<td>411</td>
<td>20.0</td>
<td>31</td>
</tr>
</tbody>
</table>

| Exceedances (#) | 2 | 1 | 8 | 3 | 3 | 6 |
| Exceedances (%) | 9 | 5 | 27 | 10 | 10 | 20 |
Figure 5-6. E. coli Water Quality Sampling Results at Site WQM130 (460130) on the Belle Fourche River from May-September during 2017, 2018, and 2019.
Figure 5-7. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM130 (460130) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-8. *E. coli* Sampling Results at Monitoring Site WQM83 (460683) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-9. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM83 (460683) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-10. *E. coli* Sampling Results at Monitoring Site WQM81 (460681) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-11. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM81 (460681) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-12. *E. coli* Sampling Results at Monitoring Site BF6 on the Belle Fourche River from May–September during 2017, 2018, and 2019
Figure 5-13. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site BF6 on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-14. *E. coli* Sampling Results at Monitoring Site WQM21 (460880) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-15. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM21 (460880) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-16. *E. coli* Sampling Results at Monitoring Site WQM76 (460676) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-17. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site WQM76 (460676) on the Belle Fourche River from May–September during 2017, 2018, and 2019.
Figure 5-18. *E. coli* Sampling Results at Monitoring Site ICR03 on Indian Creek from May-September during 2017, 2018, and 2019.
Figure 5-19. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site ICR03 on Indian Creek from May–September during 2017, 2018, and 2019.
Figure 5-20. *E. coli* Sampling Results at Monitoring Site HCR04 on Horse Creek from May–September during 2017, 2018, and 2019.
Figure 5-21. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site HCR04 on Horse Creek from May–September during 2017, 2018, and 2019.
Figure 5-22. *E. coli* Sampling Results at Monitoring Site HCR02 on Horse Creek from May–September during 2017, 2018, and 2019.
Figure 5-23. Total Suspended Sediment (TSS) Sampling Results at Monitoring Site HCR02 on Horse Creek from May–September during 2017, 2018, and 2019.
6.0 RESULTS AND CONCLUSIONS

The BFRWP’s continuing outreach efforts have enhanced public awareness about improving water quality in the watershed. The combination of radio advertisements, brochures, outreach booths, tours, the BFRWP website, and the soil-quality demonstration trailer were successful during this ongoing project. There were many comments received from the public who heard about the BFRWP from radio advertisements. This approach has increased awareness about the watershed amongst the public and spurred project participation amongst ranchers, farmers, irrigators, and landowners. The public’s acceptance and support are huge assets when making watershed-wide improvements in water quality.

Producers throughout the watershed have continued to express interest and participate in the BFRWP’s project because available technical assistance and financial incentives for irrigation and rangeland BMPs. These BMPs can help make land more productive while restoring water quality, conserving irrigation water, and improving rangeland and soil health. The BFRWP’s position is that the financial incentives offered as cost-share is a good balance that enhances the relationships between the BFRWP and agricultural producers. These relationships ensure that the BMP is maintained and continues to improve water quality and provide other natural resource benefits.

Annually, applications submitted to the BFRWP exceed the available funding and a backlog of applications exists which requires a prioritization for funding only projects that directly benefit water quality. However, the consequence to this funding dilemma is that some excellent projects are unfunded because of their location or distance from the impaired waterbody. Also, there continues to be an abundance of local interest to convert flood irrigation to sprinkler systems and to improve riparian and range health. In South Dakota, EQIP funding has increased over the last decade but it has been relatively level since 2016 and more competitive. Therefore, less irrigated acres are being converted and less riparian acres are being improved than estimated for this segment.

Finally, there is growing interest in no-till farming and cover-crop practices to improve overall soil health occurring within the watershed. These conservation practices in combination with sprinkler systems and irrigation water management directly affect water quality in the Belle Fourche River. Continued support of these practices through public and producer outreach efforts are beneficial to the BFRWP’s goals of reducing sediment and bacteria in the Belle Fourche River and its tributaries.
7.0 PROJECT BUDGET/EXPENDITURES

The BFRWP received a $900,000 EPA Section 319 Grant from the SD DENR to continue installing the BMPs that were recommended in the TMDL. The following Tables 7-1a, 7-1b, 7-2a, 7-2b, 7-3a, 7-3b, 7-4a, and 7-4b show the planned and actual budgets of 319, 319/matching funds, nonmatching funds, and combined funds, respectively.

7.1 319 BUDGET
There were no changes to the total 319 budget.

7.2 MATCHING FUNDS BUDGET
All federal-match requirements were met in this project. However, the amount of final match dollars were higher than originally estimated because additional irrigation sprinkler systems were cost-shared at a lower percentage than initially planned.

7.3 NONMATCHING FEDERAL FUNDS BUDGET
Federal nonmatching dollars, including NRCS EQIP, were not available at the time of this final report but will be updated when that information is made available.

8.0 FUTURE ACTIVITY RECOMMENDATIONS

Segment 9 will continue over the next 2 years and will install the BMPs that were outlined in the TMDL. Details for Segment 9 can be found in the BFRWP’s project implementation plan. Additional segments will ensure that the overall goal of bringing the Belle Fourche River and other impaired waterbodies within the watershed into compliance with state TSS and bacteria criteria are met. As additional TMDLs are completed for other lakes and tributaries in the watershed, implementing TMDLs that have been developed will be added to the Belle Fourche River Watershed Project.

9.0 REFERENCES

Table 7-1a. Planned Budget of 319 Funds

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Consultants ($)</th>
<th>Producer ($)</th>
<th>BFRWP ($)</th>
<th>Butte Conservation District ($)</th>
<th>Totals ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 1. Implement BMPs Recommended in the Belle Fourche River TMDL to Reduce TSS and E. coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 1. Improved Irrigation Water Delivery and Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Replace Open Laterals with Pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. Convert 11 Flood-Irrigated Systems to Sprinkler Irrigation Systems</td>
<td></td>
<td></td>
<td>400,000</td>
<td></td>
<td>400,000</td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2. Range and Riparian Area BMP Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 2. Implement Riparian/Rangeland BMPs</td>
<td></td>
<td></td>
<td></td>
<td>200,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Task 3. Improved Cropping Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
<td></td>
<td></td>
<td>200,000</td>
<td></td>
<td>200,000</td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Project Management and Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4. Project Management and Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 4. Public Outreach, Project Management and Administration</td>
<td>200,000</td>
<td></td>
<td>21,000</td>
<td>40,000</td>
<td>261,000</td>
</tr>
<tr>
<td>Objective 3. Complete Essential Water Quality Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5. Water Quality Monitoring to Assess BMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring</td>
<td>39,000</td>
<td></td>
<td></td>
<td></td>
<td>39,000</td>
</tr>
<tr>
<td>Total</td>
<td>239,000</td>
<td>600,000</td>
<td>21,000</td>
<td>40,000</td>
<td>900,000</td>
</tr>
</tbody>
</table>
Table 7-1b. Actual Budget of 319 Funds

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Consultants ($)</th>
<th>Producer ($)</th>
<th>BFRWP ($)</th>
<th>Butte Conservation District ($)</th>
<th>Totals ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 1. Implement BMPs Recommended in the Belle Fourche River TMDL to Reduce TSS and E. coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 1. Improved Irrigation Water Delivery and Application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Replace Open Laterals with Pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. Convert 11 Flood-Irrigated Systems to Sprinkler Irrigation Systems</td>
<td></td>
<td></td>
<td>346,623</td>
<td></td>
<td>346,623</td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2. Range and Riparian Area BMP Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 2. Implement Riparian/Rangeland BMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3. Improved Cropping Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Project Management and Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4. Project Management and Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 4. Public Outreach, Project Management and Administration</td>
<td>200,000</td>
<td>18,281</td>
<td>40,000</td>
<td></td>
<td>258,281</td>
</tr>
<tr>
<td>Objective 3. Complete Essential Water Quality Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5. Water Quality Monitoring to Assess BMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring</td>
<td>39,000</td>
<td></td>
<td></td>
<td></td>
<td>39,000</td>
</tr>
</tbody>
</table>

| Total | 239,000 | 541,974 | 18,281 | 40,000 | 839,255 |
Objective 1. Implement BMPs Recommended in the Belle Fourche River TMDL to Reduce TSS and *E. coli*

Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems

<table>
<thead>
<tr>
<th>Product 1. Improved Irrigation Water Delivery and Application</th>
<th>EPA 319 ($), Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. Replace Open Laterals with Pipe</td>
<td>EPA 319</td>
</tr>
<tr>
<td>1b. Convert 11 Flood-Irrigated Systems to Sprinkler</td>
<td>400,000</td>
</tr>
<tr>
<td>Irrigation Systems</td>
<td></td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
<td>25,000</td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td></td>
</tr>
</tbody>
</table>

Task 2. Range and Riparian Area BMP Implementation and Improved Cropping Systems

<table>
<thead>
<tr>
<th>Product 2. Implement Riparian/Rangeland BMPs</th>
<th>EPA 319 ($), Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA 319</td>
</tr>
<tr>
<td></td>
<td>200,000</td>
</tr>
</tbody>
</table>

Task 3. Improved Cropping Systems

<table>
<thead>
<tr>
<th>Product 3. Implement Cover Crops</th>
<th>EPA 319 ($), Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA 319</td>
</tr>
<tr>
<td></td>
<td>200,000</td>
</tr>
</tbody>
</table>

Objective 2. Conduct Public Outreach, Project Management and Administration

Task 4. Project Management and Administration

<table>
<thead>
<tr>
<th>Product 4. Public Outreach, Project Management and Administration</th>
<th>EPA 319 ($), Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA 319</td>
</tr>
<tr>
<td></td>
<td>261,000</td>
</tr>
</tbody>
</table>

Objective 3. Complete Essential Water Quality Monitoring

Task 5. Water Quality Monitoring to Assess BMPs

<table>
<thead>
<tr>
<th>Product 5. Water Quality Monitoring</th>
<th>EPA 319 ($), Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA 319</td>
</tr>
<tr>
<td></td>
<td>39,000</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>EPA 319 and Matching Funds Budget</th>
<th>EPA 319 ($), Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>900,000</td>
</tr>
</tbody>
</table>
Table 7-2b. Actual EPA 319 and Matching Funds Budget

<table>
<thead>
<tr>
<th>EPA 319 and Matching Funds Budget</th>
<th>EPA 319 ($)</th>
<th>Matching Funds ($)</th>
<th>Sum of Matching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Producer (Cash and In-kind) ($)</td>
<td>Butte CD (Cash) ($)</td>
<td>Lawrence County (Cash) ($)</td>
</tr>
<tr>
<td>Producer (Cash and In-kind) ($)</td>
<td>346,623</td>
<td>815,744</td>
<td></td>
</tr>
<tr>
<td>Butte CD (Cash) ($)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence County (Cash) ($)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFID (Cash and In-kind) ($)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WY DEQ (Cash) ($)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective 1. Implement BMPs Recommended in the Belle Fourche River TMDL to Reduce TSS and *E. coli*

Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems

Product 1. Improved Irrigation Water Delivery and Application

1a. Replace Open Laterals with Pipe

1b. Convert 11 Flood-Irrigated Systems to Sprinkler Irrigation Systems

1c. Replace Open Ditches to Pipe

1b. Irrigation Scheduling

Task 2. Range and Riparian Area BMP Implementation and Improved Cropping Systems

Product 2. Implement Riparian/Rangeland BMPs

195,351 138,822 138,822

Task 3. Improved Cropping Systems

Product 3. Implement Cover Crops

Objective 2. Conduct Public Outreach, Project Management and Administration

Task 4. Project Management and Administration

Product 4. Public Outreach, Project Management and Administration

258,281

Objective 3. Complete Essential Water Quality Monitoring

Task 5. Water Quality Monitoring to Assess BMPs

Product 5. Water Quality Monitoring

39,000 16,900 12,720 16,900 46,520

Total

839,255 954,566 0 16,900 12,720 16,900 1,001,086
Table 7-3a. Planned Nonmatching Funds Budget

<table>
<thead>
<tr>
<th>Objective 1. Implement BMPs Recommended in the Belle Fourche River Watershed TMDL to Reduce TSS and E. coli</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems</td>
<td></td>
</tr>
<tr>
<td>Product 1. Improved Irrigation Water Delivery and Application</td>
<td></td>
</tr>
<tr>
<td>1a. Replace Open Laterals with Pipe</td>
<td>SD DENR (Federal) ($)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. Convert 21 Flood-Irrigated Systems to Sprinkler Irrigation Systems</td>
<td>150,000</td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
<td></td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td>10,000</td>
</tr>
<tr>
<td>Task 2. Range and Riparian Area BMP Implementation</td>
<td></td>
</tr>
<tr>
<td>Product 2. Implement Riparian/Rangeland BMPs</td>
<td>250,000</td>
</tr>
<tr>
<td>Task 3. Improved Cropping Systems</td>
<td></td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
<td>5,000</td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Project Management and Administration</td>
<td></td>
</tr>
<tr>
<td>Task 4. Project Management and Administration</td>
<td></td>
</tr>
<tr>
<td>Product 4. Public Outreach, Project Management and Administration</td>
<td></td>
</tr>
<tr>
<td>Objective 3. Complete Essential Water Quality Monitoring</td>
<td></td>
</tr>
<tr>
<td>Task 5. Water Quality Monitoring to Assess BMPs</td>
<td></td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring</td>
<td>70,000</td>
</tr>
<tr>
<td>Total</td>
<td>70,000</td>
</tr>
</tbody>
</table>
Table 7-3b. Actual Nonmatching Funds Budget

<table>
<thead>
<tr>
<th>EPA 319 and Nonmatching Funds Budget</th>
<th>Nonmatching Funds</th>
<th>Sum of Nonmatching Funds ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD DENR (Federal) ($)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRCS EQIP (Federal) ($)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COE (Federal) ($)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOR (Federal) ($)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USGS (Federal) ($)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Grants (Conservation Commission)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 1. Implement BMPs Recommended in the Belle Fourche River Watershed TMDL to Reduce TSS and E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 1. Improved Irrigation Water Delivery and Application</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Replace Open Laterals with Pipe</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1b. Convert 11 Flood-Irrigated Systems to Sprinkler Irrigation Systems</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Task 2. Range and Riparian Area BMP Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 2. Implement Riparian/Rangeland BMPs</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Task 3. Improved Cropping Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Project Management and Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4. Project Management and Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 4. Public Outreach, Project Management and Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 3. Complete Essential Water Quality Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5. Water Quality Monitoring to Assess BMPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring</td>
<td>84,500</td>
<td>7,580</td>
</tr>
<tr>
<td>Total</td>
<td>84,500</td>
<td>7,580</td>
</tr>
</tbody>
</table>
Table 7-4a. Planned Total Budget

<table>
<thead>
<tr>
<th>Objective 1. Implement BMPs Recommended in the Belle Fourche River TMDL to Reduce TSS and E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems</td>
</tr>
<tr>
<td>Product 1. Improved Irrigation Water Delivery and Application</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1b. Convert 11 Flood-Irrigated Systems to Sprinkler Irrigation Systems</td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
</tr>
<tr>
<td>Task 2. Range and Riparian Area BMP Implementation</td>
</tr>
<tr>
<td>Product 2. Implement Range/Rangeland BMPs</td>
</tr>
<tr>
<td>Task 3. Improved Cropping Systems</td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Project Management and Administration</td>
</tr>
<tr>
<td>Task 4. Project Management and Administration</td>
</tr>
<tr>
<td>Product 4. Public Outreach, Project Management and Administration</td>
</tr>
<tr>
<td>Objective 3. Complete Essential Water Quality Monitoring</td>
</tr>
<tr>
<td>Task 5. Water Quality Monitoring to Assess BMPs</td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Table 7-4b. Actual Total Budget

<table>
<thead>
<tr>
<th>Objective 1. Implement BMPs Recommended in the Belle Fourche River TMDL to Reduce TSS and E. coli</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1. Reduce Nonused Water Discharged to the Local Waterways From the Delivery and Application Systems</td>
<td></td>
</tr>
<tr>
<td>Product 1. Improved Irrigation Water Delivery and Application</td>
<td></td>
</tr>
<tr>
<td>1a. Replace Open Laterals with Pipe</td>
<td></td>
</tr>
<tr>
<td>1b. Convert 11 Flood-Irrigated Systems to Sprinkler Irrigation Systems</td>
<td>346,623 (29.8%)</td>
</tr>
<tr>
<td>1c. Replace Open Ditches to Pipe</td>
<td></td>
</tr>
<tr>
<td>1d. Irrigation Scheduling</td>
<td>NA</td>
</tr>
<tr>
<td>Task 2. Range and Riparian Area BMP Implementation</td>
<td></td>
</tr>
<tr>
<td>Product 2. Implement Range/Rangeland BMPs</td>
<td>195,351 (58.5%)</td>
</tr>
<tr>
<td>Task 3. Improved Cropping Systems</td>
<td></td>
</tr>
<tr>
<td>Product 3. Implement Cover Crops</td>
<td>NA</td>
</tr>
<tr>
<td>Objective 2. Conduct Public Outreach, Project Management and Administration</td>
<td></td>
</tr>
<tr>
<td>Task 4. Project Management and Administration</td>
<td></td>
</tr>
<tr>
<td>Product 4. Public Outreach, Project Management and Administration</td>
<td>258,281 (100%)</td>
</tr>
<tr>
<td>Objective 3. Complete Essential Water Quality Monitoring</td>
<td></td>
</tr>
<tr>
<td>Task 5. Water Quality Monitoring to Assess BMPs</td>
<td></td>
</tr>
<tr>
<td>Product 5. Water Quality Monitoring</td>
<td>39,000 (11.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>839,255 (40.0%)</td>
</tr>
</tbody>
</table>